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The problem

We study LP-solutions u = u(t,x,v): [0, T] x R" x R” — R to linear kinetic
equations of the type

0 -Vyu=A f
{tu+v Vi u U —+ (1)

u(0) =g,

where A 1s an operator in a suitable function space X and f, g are given data.
Goal: Characterize unique solutions u to equation (1) with 0;u+v-Vu, Au €
LP((0, T); X) in terms of functions spaces for the data f and g. In particular,
show that the solutions to equation (1) define a semi-flow in the trace space.

If A admits such a characterization we say that A enjoys kinetic maximal
LP(X)-regularity.

Divide and conquer

e [he case of vanishing initial data, 1.e. g = 0. Using singular integral
theory and the solution representation given by a fundamental solution.
Complicated operators can often be reduced to simpler cases.

e [he homogeneous case, 1.e. f = 0. Make sense of the temporal trace.
How does the kinetic term transfer reqularity from v to x on this level?

The most important example

For B € (0, 2] consider the (fractional) Kolmogorov equation in R*",

{8tu+v°vxu: —(—Av)§u+f (2)

u(0) = g.

The equation dictates that for strong LP-solutions the right solution space Is

5(0, T) =A4u: u,0tu+v-Vyu, (—Av)gu c LP((0,T); LP(R*"))},

i.e. X = LP(R?"). Using operator theoretic properties of the characteristics
(t,x,v)— (t,x+ tv,Vv) we can prove

(0, T) < C([0, T]; LP(R>")),

whence X, the trace space of E(0,T), is well-defined and
C([0, T]; Xy). A theorem of Bouchut (2002) shows that

50, T) —

1(0,T) = E(0, T) N LP((0, T); Hew1P(R2M)).

Hence, the trace space should also have some regularity in x. Indeed, using
methods from harmonic analysis and the fundamental solution we prove

Xy = BB(1-1/p) (R") A Blg%x(l—l/p)

pp.V

(R*").

In particular, A = —(—A,)P/? admits kinetic maximal LP-regularity in LP(R?").

Extensions

e Lebesgue spaces with temporal weights of the form t*=* for u € (1/p, 1].
This allows to consider initial values with lower regularity and to see that
solutions regularize instantaneously.

e Different exponents of integrability, p in time and g In space.

e For g = 2 we characterize weak solutions to the (fractional) Kolmogorov
equation, cf. [1].

e Polynomial weights (1 + |v|)¥ for kK € R in the spatial variable.
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More examples

The linearization of many nonlinear kinetic models leads to the (fractional)
Kolmogorov equation with variable coefficients.

The characterization of strong LP-solutions for the Kolmogorov equation can
be extended to

Ocu+ v -Vyu=a(t,x,v): Viu+b-Vyu+cu+f
u(0) =g

provided that a(t,x,v) > X >0, be L*>®, c € L* and that
e (t,x,v)— a(t,x,v) is bounded and uniformly continuous or
o (t,x,v)— a(t,x+ tv,v) is bounded and uniformly continuous, see [2].

If a has a special structure we are also able to treat the case of non-uniform
ellipticity.
In [3] we study non-local operators with variable coefficients

A7

LUt X, v) = p-v./ dh,

n(u(t,x, v+ h) —u(t,x, v)) a(ﬁ’lv)\(n’Jr\g d

where a is symmetric in h, satisfies a similar continuity property in (t, x, v) and
IS also Holder continuous In v.

An application

The precise solution theory allows to study quasilinear kinetic partial differ-
ential equations of the type

Oru+v-Vyu=Awu+ F(u),t >0
u(0) = up.

We are interested in LP(X) solutions, that is functions such that
Oru + v - Vyu, A(u)u € LP(X). Under a local Lipschitz assumption on
the operators A and F we are able to prove local In time existence for all
up € X such that A(up) admits kinetic maximal LP(X)-regularity.

Two Examples:

e A quasilinear diffusion problem, A(w)u = V, - (k(w)V,u) for suitable
functions k.

e A kinetic toy model of the form A(w)u = — ([, wdv) (—Av)gu for

G € (0,2].

The precise characterization of the trace space 1s very helpful to control the
nonlinearities. For example embeddings such as

BZ—Z/p(RQn) N Bgﬁg’lx—l/l?) (RZn) SN CO(RZH)

PP,V

are available for p > 2n+1 .

Ongoing research

e Establish the kinetic maximal LP-regularity for more operators, such as
for example the kinetic Fokker-Planck equation Au=A,u+ v -V, u.

e \Veak LP-solutions.

e Study the local existence of solutions for more complicated quasilinear
equations.

e Global In time existence for quasilinear equations. Here, one needs to
incorporate a priori estimates from the kinetic De Girogi-Nash-Moser
theory.




