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The problem
We study Lp-solutions u = u(t, x, v) : [0, T ] × Rn × Rn → R to linear kinetic
equations of the type {

∂tu + v · ∇xu = Au + f
u(0) = g,

(1)

where A is an operator in a suitable function space X and f , g are given data.
Goal: Characterize unique solutions u to equation (1) with ∂tu+v ·∇xu, Au ∈
Lp((0, T );X) in terms of functions spaces for the data f and g. In particular,
show that the solutions to equation (1) define a semi-flow in the trace space.

If A admits such a characterization we say that A enjoys kinetic maximal
Lp(X)-regularity.

Divide and conquer
• The case of vanishing initial data, i.e. g = 0. Using singular integral

theory and the solution representation given by a fundamental solution.
Complicated operators can often be reduced to simpler cases.

• The homogeneous case, i.e. f = 0. Make sense of the temporal trace.
How does the kinetic term transfer regularity from v to x on this level?

The most important example
For β ∈ (0, 2] consider the (fractional) Kolmogorov equation in R2n,{

∂tu + v · ∇xu = −(−∆v )
β
2 u + f

u(0) = g.
(2)

The equation dictates that for strong Lp-solutions the right solution space is

E(0, T ) = {u : u, ∂tu + v · ∇xu, (−∆v )
β
2 u ∈ Lp((0, T );Lp(R2n))},

i.e. X = Lp(R2n). Using operator theoretic properties of the characteristics
(t, x, v) 7→ (t, x + tv , v) we can prove

E(0, T ) ↪→ C([0, T ];Lp(R2n)),

whence Xγ , the trace space of E(0, T ), is well-defined and E(0, T ) ↪→
C([0, T ];Xγ). A theorem of Bouchut (2002) shows that

E(0, T ) = E(0, T ) ∩ Lp((0, T );H
β
β+1
,p(R2n)).

Hence, the trace space should also have some regularity in x . Indeed, using
methods from harmonic analysis and the fundamental solution we prove

Xγ ∼= Bβ(1−1/p)pp,v (R2n) ∩ B
β
β+1
(1−1/p)

pp,x (R2n).

In particular, A = −(−∆v )β/2 admits kinetic maximal Lp-regularity in Lp(R2n).

More examples
The linearization of many nonlinear kinetic models leads to the (fractional)
Kolmogorov equation with variable coefficients.
The characterization of strong Lp-solutions for the Kolmogorov equation can
be extended to{

∂tu + v · ∇xu = a(t, x, v) : ∇2vu + b · ∇vu + cu + f
u(0) = g

provided that a(t, x, v) ≥ λ > 0, b ∈ L∞, c ∈ L∞ and that

• (t, x, v) 7→ a(t, x, v) is bounded and uniformly continuous or

• (t, x, v) 7→ a(t, x + tv , v) is bounded and uniformly continuous, see [2].

If a has a special structure we are also able to treat the case of non-uniform
ellipticity.
In [3] we study non-local operators with variable coefficients

[Aat,x,vu](t, x, v) = p.v.

∫
Rn
(u(t, x, v + h)− u(t, x, v))

a(t, x, v , h)

|h|n+β dh,

where a is symmetric in h, satisfies a similar continuity property in (t, x, v) and
is also Hölder continuous in v .

Extensions
• Lebesgue spaces with temporal weights of the form t1−µ for µ ∈ (1/p, 1].

This allows to consider initial values with lower regularity and to see that
solutions regularize instantaneously.

• Different exponents of integrability, p in time and q in space.

• For q = 2 we characterize weak solutions to the (fractional) Kolmogorov
equation, cf. [1].

• Polynomial weights (1 + |v |)k for k ∈ R in the spatial variable.

An application
The precise solution theory allows to study quasilinear kinetic partial differ-
ential equations of the type{

∂tu + v · ∇xu = A(u)u + F (u), t > 0
u(0) = u0.

We are interested in Lp(X) solutions, that is functions such that
∂tu + v · ∇xu, A(u)u ∈ Lp(X). Under a local Lipschitz assumption on
the operators A and F we are able to prove local in time existence for all
u0 ∈ Xγ such that A(u0) admits kinetic maximal Lp(X)-regularity.

Two Examples:

• A quasilinear diffusion problem, A(w)u = ∇v · (κ(w)∇vu) for suitable
functions κ.

• A kinetic toy model of the form A(w)u = −
(∫
Rn wdv

)
(−∆v )

β
2 u for

β ∈ (0, 2].

The precise characterization of the trace space is very helpful to control the
nonlinearities. For example embeddings such as

B2−2/ppp,v (R2n) ∩ B
2
3
(1−1/p)
pp,x (R2n) ↪→ C0(R2n)

are available for p > 2n + 1 .

Ongoing research
• Establish the kinetic maximal Lp-regularity for more operators, such as

for example the kinetic Fokker-Planck equation Au = ∆vu + v · ∇vu.

• Weak Lp-solutions.

• Study the local existence of solutions for more complicated quasilinear
equations.

• Global in time existence for quasilinear equations. Here, one needs to
incorporate a priori estimates from the kinetic De Girogi-Nash-Moser
theory.

References
[1] L. N. and R. Z. Kinetic maximal L2-regularity for the (fractional) Kolmogorov equation. Journal of Evolution Equations, 21, 2021.

[2] L. N. and R. Z. Kinetic maximal Lp-regularity with temporal weights and application to quasilinear kinetic diffusion equations. Journal
of Differential Equations, 307, 2021.

[3] L. N. Kinetic maximal Lpµ(L
p)-regularity for the fractional Kolmogorov equation with variable density. Nonlinear Analysis, 214, 2022.


