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Kolmogorov equation

Interested in solutions u = u(t, x, v) : [0,T]× Rn × Rn → R of{
∂tu + v · ∇xu = −(−∆v)β/2u + f
u(0) = g.

(1)

with data f, g and β ∈ (0, 2].
Key points:

– Studied first by Kolmogorov in 1934 (β = 2).
– The transport operator ∂t + v · ∇x is called kinetic term.
– Degenerate as the Laplacian acts in half of the variables.
– Unbounded coefficient in front of the lower order term.
– Prototype for the Boltzmann equation.
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Motivation - Particle Physics
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Particles at position x with ve-
locity v. We describe the move-
ment of the particles with the
SDE {

dX(t) = V(t)dt
dV(t) = dW(t),

where (W(t))t≥0 is the Wiener
process. ⇝ Kolmogorov equa-
tion with β = 2.
The Boltzmann equation mod-
els the particle collision, i.e. the
change of velocity, more pre-
cisely.
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Boltzmann equation

The Boltzmann equation can be written as

∂tu + v · ∇xu = Q(u, u) + l.o.t.,

where

Q(u, g) = p.v.
∫
Rn

u(t, x, v + h)− u(t, x, v)
|h|n+β

m(g)(t, x, v, h)dh

with

m(g)(t, x, v, h) =
∫

w⊥h
g(t, x, v + w) |w|γ+β+1 dw

and β ∈ (0, 2), γ > −n depend on physical assumptions. For
fixed g the operator Q(u, g) is the fractional Laplacian in velocity
with variable density. 3/27



Maximal regularity
Let us consider a PDE of the form{

∂tu = Au + f, t > 0
u(0) = g,

where A is an operator on a Banach space B and u a function of
time with values in B.

General Principle:
Find a function space Z for the solution u, a function space X for
the inhomogeneity f and a function space Xγ for the initial value
g such that the equation admits a unique solution u ∈ Z if and
only if f ∈ X and g ∈ Xγ .

Here: Maximal Lp-regularity, i.e. X = Lp(B) for some base space
B. 4/27



Maximal Lp-regularity

Example - Heat equation
For all p ∈ (1,∞) the heat equation{

∂tu = ∆u + f
u(0) = g

admits a unique solution
u ∈ Z = H 1,p((0,∞); Lp(Rn)) ∩ Lp((0,∞);H 2,p(Rn)) if and only
if

– f ∈ X = Lp((0,∞); Lp(Rn)),
– g ∈ Xγ = B2(1−1/p)

pp (Rn) (Besov space).
Moreover, u ∈ C([0,∞);B 2(1−1/p)

pp (Rn)).
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Towards kinetic maximal regularity
Which is the right choice for the solution space Z?
For simplicity β = 2, every result presented here holds true for
β ∈ (0, 2).

We choose X = Lp(R; Lp(R2n)). Singular integral theory on
homogeneous groups developed by Folland and Stein in 1974
allows to prove the following. If f ∈ Lp(R; Lp(R2n)), then the
solution u of the Kolmogorov equation satisfies

∥∂tu + v · ∇xu∥p + ∥∆vu∥p ≲ ∥f ∥p .

No control of the time-derivative. We prove classical maximal
Lp-regularity is not applicable.
Our choice of function space for the solution is:

Z = {u : u, ∆vu, ∂tu + v · ∇xu ∈ Lp((0,T); Lp(R2n))}.
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Singular integrals on homogeneous groups
Three important underlying structures of the Kolmogorov
equation, K(u) = ∂tu + v · ∇xu −∆vu.

- Scaling: For δλu = u(λ2t, λ3x, λv) we have
K(δλu) = δλK(u).

- Translation For z0 = (t0, x0, v0), (t, x, v) ∈ Rn we define

(t, x, v) ◦ (t0, x0, v0) = (t + t0, x + x0 + tv0, v + v0).

Then, K(u((t, x, v) ◦ z0)) = K(u)((t, x, v) ◦ z0)).
- Fundamental solution: There exists a γ ∈ C∞(R2n+1 \ {0})

such that
u =

∫
R2n+1

γ(z−1 ◦ x)f(z)dz

solves Ku = f for suitable f.
The pair (R2n+1, ◦) defines a homogeneous group. ⇝ CZO theory 7/27



Towards kinetic maximal regularity
Divide and conquer

We can split the characterization of solutions in Z in two separate
problems.

Inhomogeneous eq. with
zero intial-value X{
∂tu + v · ∇xu = ∆vu + f
u(0) = 0

Classical Method:
Lp-estimates, singular
integrals,...
Done, Folland/Stein.

Homogeneous eq. with
non-zero intial-value Xγ{

∂tu + v · ∇xu = ∆vu
u(0) = g

Classical Method: Studying
the trace space of Z.

TODO!
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Towards kinetic maximal regularity
The trace space of Z - 1
Does a function u ∈ Z admit a trace? Yes!
Sketch of the proof
Define

[Γu](t, x, v) = u(t, x + tv, v) and [Γ(t)w](x, v) = w(x + tv, v)
on functions u : [0,T]× R2n → R and w : R2n → R. Then,

∂tΓu = Γ(∂tu + v · ∇xu).
If u ∈ Z, then Γu ∈ H1,p((0,T); Lp(R2n)), whence

Γu ∈ C([0,T]; Lp(R2n)).

As (Γ(t))t∈R is a C0-group, it follows
u = Γ−1(t)Γ(t)u ∈ C([0,T]; Lp(R2n)).

Consequently, Tr(Z) well-defined and Z ↪→ C([0,T];Tr(Z)). 9/27



Towards kinetic maximal regularity
The trace space of Z - 2

The trace space of Z cannot be characterized by classical
interpolation theory. Recalling the heat equation we expect
atleast

Tr(Z) ↪→ B 2(1−1/p)
pp,v (R2n).

Is there any control of regularity in x? Yes!
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Towards kinetic maximal regularity
The phenomenon of regularity transfer from v to x.

Theorem (Bouchut 2002)
Let u ∈ Lp((0,T); Lp(R2n)) with
∂tu+ v · ∇xu ∈ Lp((0,T); Lp(R2n)) and u ∈ Lp((0,T);H 2,p

v (R2n)),
then

u ∈ Lp((0,T);H 2/3,p
x (R2n)).

In words: If u is the solution of a kinetic equation and u has two
derivatives in velocity we obtain 2/3 of a derivative in space, too.
Very useful and powerful result!
It is proven by Fourier analytic methods. For p = 2 one can see
how the characteristics (i.e. Γ) transfer the regularity.
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Towards kinetic maximal regularity
The initial value problem - 1

Consequently:

Z = Z ∩ Lp((0,T);H 2/3,p
x (R2n)).

Similar to Bouchut we also get some regularity in x for the trace
space.

Theorem (N., Zacher, 2020)
Let p ∈ (1,∞), then

Tr(Z) ∼= B2/3(1−1/p)
pp,x (R2n) ∩ B2(1−1/p)

pp,v (R2n)

An anisotropic Besov spaces with a kinetic scaling.
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Towards kinetic maximal regularity
The initial value problem

Proof - Part 1/3
We prove that the inclusion mapping

ι : Tr (Eµ(0,T)) → B2/3(1−1/p)
pp,x (R2n) ∩ B2(1−1/p)

pp,v (R2n)

is a well-defined linear, bounded and surjective operator. It
follows that ι defines an isomorphism.
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Towards kinetic maximal regularity
The initial value problem

Proof - Part 2/3
The norm of the kinetic Besov space can be equivalently
characterized by

∥φ0 ∗ g∥p +

(∫ 1

0

(∥φt ∗ g∥p
t1−1/p

)p dt
t

) 1
p

,

where φt(x, v) = t−2nφ(t−3/2x, t−1/2v) for a suitable function φ
whose Fourier transform admits compact support in an ellipsoid
and is positive in its interior.
We choose φ related to the fundamental solution of the
Kolmogorov equation. Let g ∈ Tr(Z) then w.l.o.g. we may choose
u ∈ Z is a solution of the Kolmogorov equation with u(0) = g. It
follows that ι is bounded. 14/27



Towards kinetic maximal regularity
The initial value problem

Proof - Part 3/3
Regarding the surjectivity of ι let g be an element of the kinetic
Besov space. In Fourier variables (ξ for v and k for x) the solution
of the Kolmogorov equation is given by

û(t, k, ξ) = ĝ(k, ξ + tk) exp
(
− |ξ|2 t − ξ · kt2 − |k|2 t3

3

)
.

Using the Littlewood-Paley decomposition of u we can directly
show that ∆vu ∈ Lp((0,T); Lp(R2n)), i.e. u ∈ Z, under the
assumption that B2/3(1−1/p)

pp,x (R2n) ∩ B2(1−1/p)
pp,v (R2n).
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Kinetic maximal Lp-regularity
for the (fractional) Kolmogorov equation

Theorem (N., Zacher, 2020)
Let T ∈ (0,∞). For all p ∈ (1,∞) the Kolmogorov equation{

∂tu + v · ∇xu = ∆vu + f
u(0) = g

admits a unique solution u ∈ Z if and only if
– f ∈ X = Lp((0,T); Lp(Rn)),
– g ∈ Xγ = B 2/3(1−1/p)

pp,x (R2n) ∩ B 2(1−1/p)
pp,v (R2n).

Moreover, u ∈ C([0,T];Xγ).

We say the operator A = ∆v admits kinetic maximal
Lp-regularity.
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Extensions
Change of base space

So far we have only considered the base space X = Lp(R2n).
– We also consider the case X = Lq(R2n) for some q ∈ (1,∞)

different from p and prove kinetic maximal Lp(Lq)-regularity.
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Extensions
From Lp(Lp) to Lp(Lq)

The operator f 7→ ∆vu is bounded in Lp((0,T); Lp(R2n)). In
Fourier variables it can be written as

f̂ 7→ |ξ|2
∫ t

0
exp

(
− |ξ|2 s − ξ · ks2 − |k|2 s3

3

)
f̂(t − s, k, ξ + sk)ds

Calderón-Zygmund theory for operator valued problems yields the
Lp(Lq)-boundedness. This idea is inspired by the same result for
the maximal regularity of non-autonomous PDE. Note that if u is
a solution of the Kolmogorov equation, then w = Γu solves the
non-autonomous degenerate PDE

∂tw = (∇v − t∇x) · (∇v − t∇x)w.
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Extensions
Change of base space

So far we have only considered the base space X = Lp(R2n).
– We also consider the case X = Lq(R2n) for some q ∈ (1,∞)

different from p and prove kinetic maximal Lp(Lq)-regularity.
– For p ∈ (1,∞), q = 2 we characterize the regularity of weak

solutions to the fractional Kolmogorov equation. Here, we
again use the solution formula and the availability of the
theorem of Plancherel for the x and v variables as q = 2.
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Extensions
Temporal weights

Instead of Lp((0,T);X) we consider a Lebesgue space with
temporal weight of the form t1−µ for some µ ∈ (1/p, 1] defined as

Lp
µ((0,T);X) = {u : (0,T) → X :

∫ T

0
tp−pµ ∥u(t)∥p

X dt < ∞}.

We write Zµ for Z with temporal weight in the Lp-spaces.
Key features:

– Kin. max. Lp-reg. ⇐⇒ Kin. max. Lp
µ-reg. for any

µ ∈ (1/p, 1]
– The trace space of Zµ is given by

Tr(Zµ) = Xγ,µ = B 2/3(µ−1/p)
pp,x (R2n) ∩ B 2(µ−1/p)

pp,v (R2n).
– Instantaneous regularization

Zµ(0,T) ↪→ Z(δ,T) ↪→ C([δ,T];Xγ,1) for all δ > 0. 20/27



Extensions
Kinetic maximal Lp

µ(Lq)-regularity

Theorem (N., Zacher, 2020)
Let T ∈ (0,∞). For all p, q ∈ (1,∞) and any µ ∈ (1/p, 1] the
Kolmogorov equation{

∂tu + v · ∇xu = ∆vu + f
u(0) = g

admits a unique solution
u ∈ Zµ = {u : u, ∆vu, ∂tu + v · ∇xu ∈ Lp

µ((0,T); Lq(R2n))}.

if and only if
– f ∈ X = Lp

µ((0,T); Lq(Rn)),
– g ∈ Xγ,µ = B 2/3(µ−1/p)

qp,x (R2n) ∩ B 2(µ−1/p)
qp,v (R2n).

Moreover, u ∈ C([0,T];Xγ,µ).
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Extensions
Different Operators

Question: Do other operators admit kinetic maximal
Lp-regularity? Yes.

Examples:

– Au = a(t, x, v) : ∇2
vu + b · ∇vu + cu

– Au = −(−∆v)
β
2 u with β ∈ (0, 2)

– non-local integro-differential operators acting in velocity with
possibly time, space and velocity dependent density of the
form

Au = p.v.
∫
Rn

u(t, x, v + h)− u(t, x, v)
|h|n+β

m(t, x, v, h)dh

22/27



Extensions
Different Operators

Theorem (N., Zacher, 2020)
Let p, q ∈ (1,∞), µ ∈ (1/p, 1], a ∈ L∞([0,T]× R2n;Sym(n)),
b ∈ L∞([0,T]×R2n;Rn) and c ∈ L∞([0,T]×R2n;R). If a ≥ λId
for some λ > 0 and if the function (t, x, v) 7→ a(t, x + tv, v) is
uniformly continuous, then then the family of operators

A(t)u = a(t, ·) : ∇2
vu + b(t, ·) · ∇vu + c(t, ·)u

admits kinetic maximal Lp
µ(Lq)-regularity.
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Quasilinear kinetic diffusion problem
Short-time existence

We prove short-time existence of strong Lp
µ-solutions to the

following quasilinear kinetic diffusion equation{
∂tu + v · ∇xu = ∇v · (a(u)∇vu)
u(0) = g

for a ∈ C 2
b (R;Sym(n)) with a ≥ λId for some λ > 0,

µ− 1/p > 2n/p and g ∈ Xγ,µ.

Method: Freeze the equation at the initial value and use kinetic
maximal Lp-regularity for the frozen equation. Here, we need the
kinetic maximal regularity of A = a(g(x, v)) : ∇2

vu.
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Quasilinear kinetic diffusion problem
Short-time existence

Another interesting quasilinear Problem is{
∂tu + v · ∇xu =

(∫
Rn uµdv

)
∆vu

u(0) = g

with µ ∈ L1(Rn).
The more particles there are at a position x the more diffusion
there is. If µ− 1/p > 2n/p and g ∈ Xγ,µ we can show the
existence of a strong Lp

µ-solution for a possibly short time.

Models of this type are an important step towards more
complicated equations such as the Landau and the Boltzmann
equation.
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Further research

Possible directions:
– weak Lp-solutions
– study quasilinear kinetic problems from

physics/economics/biology
– qualitative study of quasilinear problems such as large time

behavior
– conditions on the operator A such that it admits kinetic

maximal Lp-regularity
– different first order terms, for example ∂t + ⟨x,B∇⟩ or the

relativistic kinetic term ∂t +
v√

1+|v|2
∇x
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