KOLMOGOROV EQUATION
We consider the Cauchy problem

{3tu—|—v-vquvu+f 1)

u(0) =g

with u = u(t,xz,v): [0,T] x R” x R® — R and data
f,g. The function u models the density of moving
particles at time ¢, position z and with velocity v
given by a Wiener process.

Key points:

e Studied first by Kolmogorov in 1934 (gave a fun-
damental solution).

e Prototype for the Boltzmann equation.
e Degenerate - Laplacian acts in half of the variables.

e Unbounded coefficient in front of the lower order
term.

e The transport part 0; + v - V, is called kinetic term.

CONTINUITY IN TIME

Define the operator I' on LP((0,T); LP(R*")) as
['u = u(t,x + tv,v). Then, O;I' = I'(0; + v - V).
Moreover, I'(¢) defines a strongly continuous group
on LP(R*"). Writing v = ' '(t)['(t)u gives u &
C([0,T]; LP(R*"™)) if w € Z. An abstract argument
due to Amann shows that every function v € Z is
continuous with values in the trace space tr(2).
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KINETIC MAXIMAL L”-REGULARITY
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[P-SOLUTIONS

We are interested in LP-solutions of the Kolmogorov
equation.

e [.ocal LP-estimates provided in 1967 by Rothschild
and Stein.

e Extended in several directions in the last 20 years.

By the methods of Folland and Stein provided in
1974 one can prove the following. For all f &
LP((0,T); LP(R*™)) and g = 0 the solution u of the
Kolmogorov equation satisties

|0vu + v - Vaul|, + | Ayull, < C[f]],

There is no control of the time-derivative, in partic-
ular, the classical theory of maximal LP-regularity is
not applicable. Goal: Characterize f, g in terms of
function spaces such that v € LP((0,T); HZP(R*"))
and O;u + v - Vyu € LP((0,T); LP(R*"™)) (we write
u € 7).

KIN. MAX. /[’-REGULARITY

Main result:
For all p € (1, 00) the Kolmogorov equation (1) ad-
mits a unique solution u € Z if and only if

o f € LP((0,T); LP(R*"))
2(1-1/p) (RZn) a B2/3(1_1/P) (RQn)

® g € Bppo PP,T

Moreover, the solution is continuous with values in
the trace space B2y, /P (R2m) N B3~ 1/P)(R2n),
We say that A, admits kinetic maximal L% (LP)-
reqularity.
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IS THERE REGULARITY IN X?

Just before the begin of the 20th century it was
proven that LP-solutions to the kinetic equations
with regularity in v admit some regularity in z,
too. This development culminated in the work of
Bouchut in 2002. We call this the kinetic transfer
of regularity. Let 8 > 0. Bouchut proved that if

w € LP((0,T); H?P(R?™)) is a solution of the kinetic
transport equation

Oiu+v-Vyu=gq
with g € LP((0,T); L?(R*™)), then,

_B
u € LP((0,T); HY 7 (R?™).

This quantifies the regularity transfter from /-

derivatives in velocity v to %—derivatives In space

z. The estimate can be motivated by scaling proper-
ties of the kinetic term.

FURTHER EXTENSIONS

We extend the results in several directions.

e We replace A, by the fractional Laplacian
B

2 and study operators with variable
coefficients a(t,z,v): V2 +b-V, + cu.

e We investigate different exponents of integrability
pintand qin (z,v).

e We introduce temporal weights of the form ¢* ~* for

u € (1/p, 1] wich allow to see instantaneous regular-
ization nicely and reduce the initial value regularity.

e We fully characterize weak solutions in the case p €
(17 OO)/ q =2and S (1/]7, 1]

FUTURE RESEARCH

Quasilinear kinetic equations raise many interesting questions. A priori estimates and global existence are
important topics to name a few. Moreover, the regularity of weak LP-solutions needs further investigation.
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INITIAL VALUE PROBLEM

By the regularity transter result of Bouchut we have

Z = Z 0 LP((0,T); H/*? (R?M))

Obviously, the trace space ot Z should control regu-
larity in z and v. However, the trace space can’t be
characterized by classical interpolation theory. We
prove that the trace space can be characterized by
an anisotropic Besov space, 1.e.

r(2) = B2, VP (R2") 0 B30 (R,
by use of Littlewood-Paley decomposition, Fourier
analysis and the fundamental solution of the Kol-

mogorov equation.
Recall:

Z ={u: u, Ayu,Ou+v-Vyu € LP((0,T); LP(RQn))}

(QUASILINEAR KINETIC EQ.

We use the theory of kinetic maximal LP-reqularity to
prove short-time existence of solutions u in the class
Z to the quasilinear kinetic diffusion problem

{atu +v-Veu=V, - (alu)V,u)
u(0) =g

with ¢ in the trace space of Z. We only need to as-
sume a € C?(R;Sym(n)) with a > AId and p >
4n + 2 so that

tr(Z) < Co(R*™) N ,C(R*™).
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