

KOLMOGOROV EQUATION

We consider the Cauchy problem

$$\begin{cases} \partial_t u + v \cdot \nabla_x u = \Delta_v u + f \\ u(0) = g \end{cases}$$
(1)

with $u = u(t, x, v) \colon [0, T] \times \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ and data f, g. The function u models the density of moving particles at time t, position x and with velocity vgiven by a Wiener process.

Key points:

- Studied first by Kolmogorov in 1934 (gave a fundamental solution).
- Prototype for the Boltzmann equation.
- Degenerate Laplacian acts in half of the variables.
- Unbounded coefficient in front of the lower order term.
- The transport part $\partial_t + v \cdot \nabla_x$ is called kinetic term.

CONTINUITY IN TIME

Define the operator Γ on $L^p((0,T); L^p(\mathbb{R}^{2n}))$ as $\Gamma u = u(t, x + tv, v)$. Then, $\partial_t \Gamma = \Gamma(\partial_t + v \cdot \nabla_x)$. Moreover, $\Gamma(t)$ defines a strongly continuous group on $L^p(\mathbb{R}^{2n})$. Writing $u = \Gamma^{-1}(t)\Gamma(t)u$ gives $u \in$ $C([0,T];L^p(\mathbb{R}^{2n}))$ if $u \in Z$. An abstract argument due to Amann shows that every function $u \in Z$ is continuous with values in the trace space tr(Z).

REFERENCES

- Kinetic maximal L^2 -[1] L. Niebel and R. Zacher. regularity for the (fractional) Kolmogorov equation. 2020.
- [2] L. Niebel and R. Zacher. Kinetic maximal L^p regularity with temporal weights and application to quasilinear kinetic diffusion equations. 2020.

KINETIC MAXIMAL L^p -REGULARITY

Institute of Applied Analysis, Ulm University Lukas Niebel, Rico Zacher

L^p-SOLUTIONS

- We are interested in L^p -solutions of the Kolmogorov equation.
- Local *L^p*-estimates provided in 1967 by Rothschild and Stein.
- Extended in several directions in the last 20 years.
- By the methods of Folland and Stein provided in 1974 one can prove the following. For all $f \in$ $L^p((0,T); L^p(\mathbb{R}^{2n}))$ and g = 0 the solution u of the Kolmogorov equation satisfies

$$\left\|\partial_{t}u + v \cdot \nabla_{x}u\right\|_{p} + \left\|\Delta_{v}u\right\|_{p} \leq C\left\|f\right\|_{p}$$

There is no control of the time-derivative, in particular, the classical theory of maximal L^p -regularity is not applicable. **Goal:** Characterize *f*, *g* in terms of function spaces such that $u \in L^p((0,T); H^{2,p}_v(\mathbb{R}^{2n}))$ and $\partial_t u + v \cdot \nabla_x u \in L^p((0,T); L^p(\mathbb{R}^{2n}))$ (we write $u \in Z$).

KIN. MAX. L^p -REGULARITY

Main result:

For all $p \in (1, \infty)$ the Kolmogorov equation (1) admits a unique solution $u \in Z$ if and only if

• $f \in L^p((0,T);L^p(\mathbb{R}^{2n}))$ • $g \in B_{pp,v}^{2(1-1/p)}(\mathbb{R}^{2n}) \cap B_{pp,x}^{2/3(1-1/p)}(\mathbb{R}^{2n}).$

Moreover, the solution is continuous with values in the trace space $B_{pp,v}^{2(1-1/p)}(\mathbb{R}^{2n}) \cap B_{pp,x}^{2/3(1-1/p)}(\mathbb{R}^{2n})$. We say that Δ_v admits kinetic maximal $L^p_{\mu}(L^p)$ regularity.

FUTURE RESEARCH

Quasilinear kinetic equations raise many interesting questions. A priori estimates and global existence are important topics to name a few. Moreover, the regularity of weak L^p -solutions needs further investigation.

with temporal weights and application to quasilinear kinetic diffusion equations

IS THERE REGULARITY IN X?

Just before the begin of the 20th century it was proven that L^p -solutions to the kinetic equations with regularity in v admit some regularity in x, too. This development culminated in the work of Bouchut in 2002. We call this the kinetic transfer of regularity. Let $\beta \geq 0$. Bouchut proved that if $u \in L^p((0,T); H^{\beta,p}_v(\mathbb{R}^{2n}))$ is a solution of the kinetic transport equation

 $\partial_t u + v \cdot \nabla_x u = g$

with $g \in L^p((0,T); L^p(\mathbb{R}^{2n}))$, then, $u \in L^{p}((0,T); H_{x}^{\frac{\beta}{\beta+1},p}(\mathbb{R}^{2n})).$

This quantifies the regularity transfer from β derivatives in velocity v to $\frac{\beta}{\beta+1}$ -derivatives in space *x*. The estimate can be motivated by scaling properties of the kinetic term.

FURTHER EXTENSIONS

We extend the results in several directions.

- We replace Δ_v by the fractional Laplacian and study operators with variable $-(-\Delta_v)^{\frac{\beta}{2}}$ coefficients $a(t, x, v): \nabla_v^2 + b \cdot \nabla_v + cu$.
- We investigate different exponents of integrability p in t and q in (x, v).
- We introduce temporal weights of the form $t^{1-\mu}$ for $\mu \in (1/p, 1]$ wich allow to see instantaneous regularization nicely and reduce the initial value regularity. • We fully characterize weak solutions in the case $p \in$
- $(1,\infty)$, q = 2 and $\mu \in (1/p, 1]$.

ulm university universität

INITIAL VALUE PROBLEM

By the regularity transfer result of Bouchut we have

 $Z = Z \cap L^{p}((0,T); H_{x}^{2/3,p}(\mathbb{R}^{2n})).$

Obviously, the trace space of Z should control regularity in *x* and *v*. However, the trace space can't be characterized by classical interpolation theory. We prove that the trace space can be characterized by an anisotropic Besov space, i.e.

 $\operatorname{tr}(Z) \cong B_{pp,v}^{2(1-1/p)}(\mathbb{R}^{2n}) \cap B_{pp,x}^{2/3(1-1/p)}(\mathbb{R}^{2n}),$

by use of Littlewood-Paley decomposition, Fourier analysis and the fundamental solution of the Kolmogorov equation. **Recall:**

 $Z = \{ u \colon u, \Delta_v u, \partial_t u + v \cdot \nabla_x u \in L^p((0, T); L^p(\mathbb{R}^{2n})) \}$

QUASILINEAR KINETIC EQ.

We use the theory of kinetic maximal L^p -regularity to prove short-time existence of solutions *u* in the class *Z* to the quasilinear kinetic diffusion problem

$$\begin{cases} \partial_t u + v \cdot \nabla_x u = \nabla_v \cdot (a(u) \nabla_v u) \\ u(0) = g \end{cases}$$

with g in the trace space of Z. We only need to assume $a \in C_b^2(\mathbb{R}; \operatorname{Sym}(n))$ with $a \geq \lambda \operatorname{Id}$ and $p > \lambda$ 4n+2 so that

 $\operatorname{tr}(Z) \hookrightarrow C_0(\mathbb{R}^{2n}) \cap {}_v C_0^1(\mathbb{R}^{2n}).$

DOWNLOAD THE POSTER

and the preprints.