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Two-phase Euler equations with surface tension
Velocity field of the fluid U : R× R3 → R3 solution to

ρ(∂tU + (U · ∇)U) +∇P = 0 in R× R3

∇ · U = 0 in R× R3

JP K = σH on S(t)
JU · nK = 0 on S(t)

pressure P ; surface tension σ > 0; mean curvature H; jump Jf K = f out − f in

density ρ(t) = ρin1Din(t) + ρ
out1Dout(t) for ρin, ρout ≥ 0

n

S(t) Outer phase Dout

Inner phase Din

Traveling wave solutions
For a given speed V ≥ 0 we make the ansatz S(t) = S + tV e3 and

u(x) = U(t, x1, x2, x3 + V t)− V e3 p(x) = P (t, x1, x2, x3 + V t).

The time-independent u, p,S solve the steady two-phase Euler equations with
velocity field approaching −V e3 at infinity .
Bernoulli equations (for steady flows) for the inner/outer phase allow to rewrite
the interfacial condition as
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q
ρ|u|2
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+ σH = const on S.

Assumptions:
Axisymmetric and swirl-free flow: u = u(r, z) and azimutal uϕ = 0.
Uniform vorticity distribution in the inner phase for some a ∈ R:

curl uin = ωa =
15

2
a

−x2x1
0

 = 15
2
a reϕ.

Irrotational flow curl uout = 0 in the outer domain.
Volume

∣∣Din
∣∣ = 4

3πR
3.

Weber number:We =
ρoutV 2R

σ
, Vortex Weber number: γ =

ρina2R5

σ

Overdetermined free boundary value problem
Vector stream function ψ : R3 → R3 with u = curlψ − V e3. Decompose

ψ =
(
aψin + V/2 s sin θ eϕ

)
1Din + V ψout1Dout

with ψin : Din → R3 solution to−∆ψ
in = 15

2 s sin θ eϕ in Din,

ψin = 0 on S,

and ψout : Dout → R3 vanishing at infinity and solving−∆ψ
out = 0 in Dout,

ψout = 1
2s sin θ eϕ on S.

Jump equation:
γ

2
|curlψin|2 −

We

2
|curlψout − e3|2 +H = const. on S.

We > γ We = γ We < γ We = γ γ1 γ2

Hill’s spherical vortex

A first solution is given by S the sphere of radius R, VS = |a|R2
√
ρin

ρout ,

ψS(x) =

−x2x1
0

 ·

3a

4

(
R2 − |x |2

)
+
VS
2

for |x | ≤ R
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for |x | > R,

Vortex sheet at S (jump of tangential velocity), whenever VS ̸= aR2. Moreover,
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ρ|curlψS − VSe3|2
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2 ) = 0.

Perturbative ansatz
For a shape function η ∈ Hβ(S2) with norm bounded

S2

Sη

r

x3

by c0 we consider

Sη =
{
(1 + η(x))x : x ∈ S2

}
.

We impose
1. axi-symmetry η = η(θ),
2. reflection invariance w.r.t. x1x2-plane,
3. the volume constraint

∣∣Din
η

∣∣ = 4
3π,

and write η ∈Mβ
c0 , χη = (1 + η(x))x.

Functional: F : R× R×Mβ
c0 → H

β−2
sym (S2)/const defined as

F(γ,We, η) =
γ

2

∣∣(curlψin
η ) ◦ χη

∣∣2 − We
2

∣∣(curlψout
η ) ◦ χη − e3

∣∣2 +Hη ◦ χη.
Goal: find We, γ and η such that F(γ,We, η) = const.

Theorem
Let β > 2. There exists c0(β) > 0 and an increasing sequence Γ = (γk)k∈N
diverging to infinity as k →∞, and γ1 ≥ 1.862, with the following property:

(1) For any γ ∈ [0,∞) \ Γ and any We close to but different from γ, there
exists a unique nontrivial solution η = η(γ,We) ∈ Mβ

c0 to the jump
equation. This solution is smooth.

(2) For any k ∈ N, there exists a unique local curve s 7→ γ(s) passing
through γk and nontrivial smooth shape functions η(s) ∈Mβ

c0 such that
the jump equation is solved with Weber numbers (γ(s), γ(s)).

Corollary: The spherical vortex is non-unique for We = γ ≈ γk .

Proof
1. Hill’s spherical vortex: F(γ, γ, 0) = 2 = const.

2. Linearisation:

⟨DηF(γ, γ, η)|η=0, δη⟩ =
9

2
γ sin θ eϕ·(2Id−Λ)(sin θ δη eϕ)− (∆S2 + 2Id) δη,

where Λ is the Dirichlet-to-Neumann map on the unit ball in R3.

3. Via spherical harmonics we reduce the analysis to the spectral properties
of an infinite matrix operator in weighted sequence spaces ⇝ Γ.

4. At γ ∈ [0,∞) \ Γ we use the implicit function theorem ⇝ (1).

5. At γ ∈ Γ we employ the Crandall-Rabinowitz bifurcation theorem⇝ (2).
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