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Two-phase Euler equations with surface tension

Velocity field of the fluid U: R x R® — R3 solution to

o(0:U+ (U-VU)+VP =0 in R x R’
V-U=0 in R x R>

1P| =0oH on S(t)

IU-n|=0 on S(t)

pressure P; surface tension o > 0; mean curvature H; jump [f] = fout — "
density p(t) = " Lpin(y) + P Lpau(y) for p", o >0

S(t)/

Inner phase D"

n

Outer phase D°Ut

Traveling wave solutions

For a given speed V > 0 we make the ansatz S(t) =S + tVes and

Vt) —Ves p(x)= P(t, x1,x,x3+Vt).

The time-independent u, p, S solve the steady two-phase Euler equations with
velocity field approaching —Ves at infinity .

Bernoulli equations (for steady flows) for the inner/outer phase allow to rewrite
the interfacial condition as

u(x) = U(t, x1, X2, X3

1
5 [olul?] +oH = const on S.

Assumptions:
Axisymmetric and swirl-free flow: v = u(r, z) and azimutal u, = 0.
Uniform vorticity distribution in the inner phase for some a € R:
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Irrotational flow curl u°“t = 0 in the outer domain.
Volume |D"| = %w/&ﬁ.
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P — Vortex Weber number: v = P -

Weber number: We =

Overdetermined free boundary value problem

Vector stream function ¥: R3 — R3 with v = curly — Ve;. Decompose
Y = (azpi” + V/2 ssinf e(p) Lo + VU L pou
with Y™ : D" — R3 solution to
—AY" = Z2ssinfe, in D",
,l/jin —0

and 1p°Ut: DeUt 5 R3 vanishing at infinity and solving

on S,

—A’lPOUt — O in Dout’

Yot = Issinfe,
W
2

on S§.

. - e
Jump equation: %|cur| Y| lcurl °"t — e3]* + H = const. on S.
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Steady bubbles and drops
In inviscid fluids
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Hill's spherical vortex

A first solution is given by S the sphere of radius R, Vs = |a| R?,/ £~

Io)
3 V.
— X5 Za (R2 — |X|2) + ?S for |x] <R
Ys(x) = | x1 3
0 Vs R for |x| > R
2 |x|? |

Vortex sheet at S (jump of tangential velocity), whenever Vs # aR?. Moreover,

1 9 In u
5 [plcurl s — Vses|?] = o2 (a®R*"™ — p°"'VE) (xf +x3) = 0.

Perturbative ansatz

For a shape function n € HP(S?) with norm bounded 3,

by ¢g we consider

Sp={14+nx))x:xe€S}.
We impose
1. axi-symmetry n = n(9), > T
2. reflection invariance w.r.t. xyxo-plane,
3. the volume constraint |Dji| = 2,

Sy

and write ) € /\/lfo, Xn = (1 + n(x))x.

Functional: 7: R x R X /\/lgO — HP2(S?) /const defined as

sym

Y in 2 We
Fly. We,m) = X [(curlyif) o xa” — 2

Goal: find We, v and 1 such that F(«, We, ) = const.

(curl Pp™) o xn — €3 gt Hp o Xn-

Theorem

Let B > 2. There exists ¢o(B) > 0 and an increasing sequence I = (Vk)ken
diverging to infinity as k — oo, and «y; > 1.862, with the following property:

(1) For any v € [0,00) \ [ and any We close to but different from =y, there
exists a unique nontrivial solution n = (v, We) €& /\/1[20 to the jump
equation. This solution 1s smooth.

(2) For any k € N, there exists a unique local curve s — y(s) passing
through v, and nontrivial smooth shape functions n(s) € /\/lgO such that
the jJump equation is solved with Weber numbers (y(s),y(s)).

Corollary: The spherical vortex is non-unique for We = v =~ 7.

Proof

1. Hill's spherical vortex: F(<,,0) = 2 = const.

2. Linearisation:

9 . .
(DpF (Y, Y, M) |n=0,0m) = 57Ysin 0 ey, (21d—A)(sinBdne,) — (Ase + 21d) o7,

where A is the Dirichlet-to-Neumann map on the unit ball in R3.

3. Via spherical harmonics we reduce the analysis to the spectral properties
of an Infinite matrix operator In weighted sequence spaces ~~ [ .

4. At v € [0,00) \ [ we use the implicit function theorem ~~ (1).

5. At v € I we employ the Crandall-Rabinowitz bifurcation theorem ~~ (2).
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