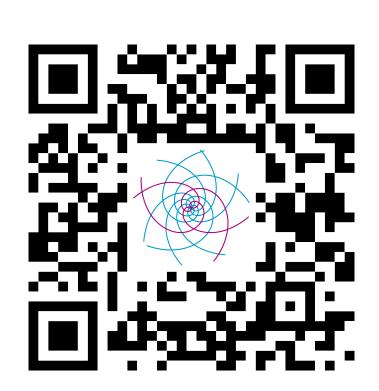


Steady bubbles and drops

in inviscid fluids

David Meyer¹, Lukas Niebel², Christian Seis²,
¹ICMAT Madrid; ²University of Münster



 \mathbb{S}^2

Two-phase Euler equations with surface tension

Velocity field of the fluid $U: \mathbb{R} \times \mathbb{R}^3 \to \mathbb{R}^3$ solution to

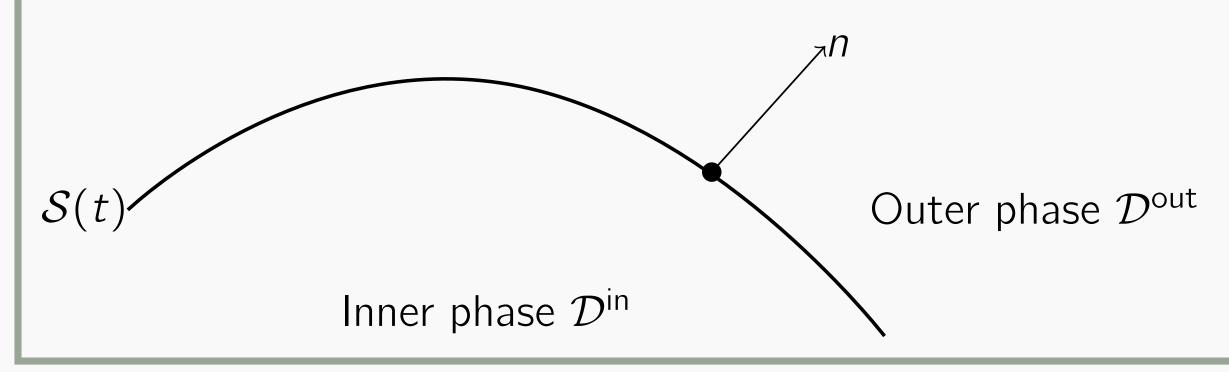
$$\rho(\partial_t U + (U \cdot \nabla)U) + \nabla P = 0 \qquad \text{in } \mathbb{R} \times \mathbb{R}^3$$

$$\nabla \cdot U = 0 \qquad \text{in } \mathbb{R} \times \mathbb{R}^3$$

$$\llbracket P \rrbracket = \sigma H \qquad \text{on } \mathcal{S}(t)$$

$$\llbracket U \cdot n \rrbracket = 0 \qquad \text{on } \mathcal{S}(t)$$

pressure P; surface tension $\sigma > 0$; mean curvature H; jump $[f] = f^{\text{out}} - f^{\text{in}}$ density $\rho(t) = \rho^{\text{in}} \mathbb{1}_{\mathcal{D}^{\text{in}}(t)} + \rho^{\text{out}} \mathbb{1}_{\mathcal{D}^{\text{out}}(t)}$ for ρ^{in} , $\rho^{\text{out}} \geq 0$



Traveling wave solutions

For a given speed $V \geq 0$ we make the ansatz $\mathcal{S}(t) = \mathcal{S} + tVe_3$ and

$$u(x) = U(t, x_1, x_2, x_3 + Vt) - Ve_3$$
 $p(x) = P(t, x_1, x_2, x_3 + Vt).$

The time-independent u, p, S solve the steady two-phase Euler equations with velocity field approaching $-Ve_3$ at infinity .

Bernoulli equations (for steady flows) for the inner/outer phase allow to rewrite the interfacial condition as

$$\frac{1}{2} \llbracket \rho |u|^2 \rrbracket + \sigma H = \text{const on } \mathcal{S}.$$

Assumptions:

Axisymmetric and swirl-free flow: u = u(r, z) and azimutal $u_{\varphi} = 0$. Uniform vorticity distribution in the inner phase for some $a \in \mathbb{R}$:

$$\operatorname{curl} u^{\text{in}} = \omega_a = \frac{15}{2} a \begin{pmatrix} -x_2 \\ x_1 \\ 0 \end{pmatrix} = \frac{15}{2} a r e_{\varphi}.$$

Irrotational flow curl $u^{\text{out}}=0$ in the outer domain. Volume $|\mathcal{D}^{\text{in}}|=\frac{4}{3}\pi R^3$.

Weber number: We = $\frac{\rho^{\text{out}}V^2R}{\sigma}$, Vortex Weber number: $\gamma = \frac{\rho^{\text{in}}a^2R^5}{\sigma}$

Overdetermined free boundary value problem

Vector stream function $\psi \colon \mathbb{R}^3 \to \mathbb{R}^3$ with $u = \operatorname{curl} \psi - V e_3$. Decompose $\psi = \left(a\psi^{\mathsf{in}} + V/2 \, s \sin\theta \, e_{\varphi}\right) \, \mathbb{1}_{\mathcal{D}^{\mathsf{in}}} + V \psi^{\mathsf{out}} \, \mathbb{1}_{\mathcal{D}^{\mathsf{out}}}$

with $\psi^{\mathsf{in}} \colon \mathcal{D}^{\mathsf{in}} o \mathbb{R}^3$ solution to

$$egin{cases} -\Delta \psi^{ ext{in}} = rac{15}{2} s \sin heta \, e_{arphi} & ext{in } \mathcal{D}^{ ext{in}}, \ \psi^{ ext{in}} = 0 & ext{on } \mathcal{S}, \end{cases}$$

and $\psi^{ ext{out}} \colon \mathcal{D}^{ ext{out}} o \mathbb{R}^3$ vanishing at infinity and solving

$$egin{cases} -\Delta \psi^{ ext{out}} = 0 & ext{in } \mathcal{D}^{ ext{out}}, \ \psi^{ ext{out}} = rac{1}{2} s \sin heta \, e_{oldsymbol{arphi}} & ext{on } \mathcal{S}. \end{cases}$$

Jump equation: $\frac{\gamma}{2} |\text{curl } \psi^{\text{in}}|^2 - \frac{\text{We}}{2} |\text{curl } \psi^{\text{out}} - e_3|^2 + H = \text{const. on } \mathcal{S}.$

Hill's spherical vortex

A first solution is given by S the sphere of radius R, $V_S = |a| R^2 \sqrt{\frac{\rho^{\text{in}}}{\rho^{\text{out}}}}$,

$$\psi_{S}(x) = \begin{pmatrix} -x_{2} \\ x_{1} \\ 0 \end{pmatrix} \cdot \begin{cases} \frac{3a}{4} \left(R^{2} - |x|^{2} \right) + \frac{V_{S}}{2} & \text{for } |x| \leq R \\ \frac{V_{S}}{2} \frac{R^{3}}{|x|^{3}} & \text{for } |x| > R, \end{cases}$$

Vortex sheet at S (jump of tangential velocity), whenever $V_S \neq aR^2$. Moreover,

$$\frac{1}{2} \left[\rho |\operatorname{curl} \psi_S - V_S e_3|^2 \right] = \frac{9}{8R^2} \left(a^2 R^4 \rho^{\text{in}} - \rho^{\text{out}} V_S^2 \right) (x_1^2 + x_2^2) = 0.$$

Perturbative ansatz

For a shape function $\eta \in H^{\beta}(\mathbb{S}^2)$ with norm bounded by c_0 we consider

 $S_{\eta} = \left\{ (1 + \eta(x))x : x \in \mathbb{S}^2 \right\}.$

We impose

- 1. axi-symmetry $\eta = \eta(\theta)$,
- 2. reflection invariance w.r.t. x_1x_2 -plane,
- 3. the volume constraint $|\mathcal{D}_n^{\text{in}}| = \frac{4}{3}\pi$,

and write $\eta \in \mathcal{M}_{c_0}^{\beta}$, $\chi_{\eta} = (1 + \eta(x))x$.

Functional: $\mathcal{F}: \mathbb{R} \times \mathbb{R} \times \mathcal{M}_{c_0}^{\beta} \to \mathsf{H}_{\mathsf{sym}}^{\beta-2}(\mathbb{S}^2)/_{\mathsf{const}}$ defined as

$$\mathcal{F}(\gamma, \mathsf{We}, \eta) = rac{\gamma}{2} \left| (\mathsf{curl}\, \psi^\mathsf{in}_\eta) \circ \chi_\eta \right|^2 - rac{\mathsf{We}}{2} \left| (\mathsf{curl}\, \psi^\mathsf{out}_\eta) \circ \chi_\eta - e_3 \right|^2 + H_\eta \circ \chi_\eta.$$

Goal: find We, γ and η such that $\mathcal{F}(\gamma, \text{We}, \eta) = \text{const.}$

Theorem

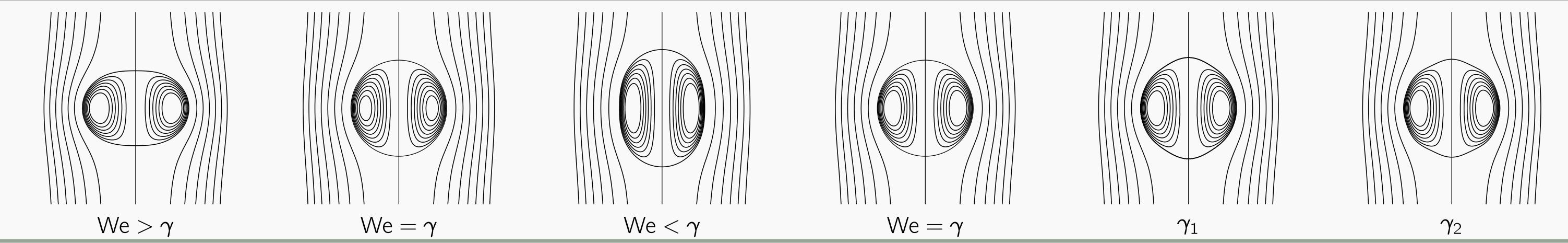
Let $\beta > 2$. There exists $c_0(\beta) > 0$ and an increasing sequence $\Gamma = (\gamma_k)_{k \in \mathbb{N}}$ diverging to infinity as $k \to \infty$, and $\gamma_1 \ge 1.862$, with the following property:

- (1) For any $\gamma \in [0, \infty) \setminus \Gamma$ and any We close to but different from γ , there exists a unique nontrivial solution $\eta = \eta(\gamma, \text{We}) \in \mathcal{M}_{c_0}^{\beta}$ to the jump equation. This solution is smooth.
- (2) For any $k \in \mathbb{N}$, there exists a unique local curve $s \mapsto \gamma(s)$ passing through γ_k and nontrivial smooth shape functions $\eta(s) \in \mathcal{M}_{c_0}^{\beta}$ such that the jump equation is solved with Weber numbers $(\gamma(s), \gamma(s))$.

Corollary: The spherical vortex is non-unique for We = $\gamma \approx \gamma_k$.

Proof

- 1. Hill's spherical vortex: $\mathcal{F}(\gamma, \gamma, 0) = 2 = \text{const.}$
- 2. Linearisation:
- $\langle D_{\eta} \mathcal{F}(\gamma, \gamma, \eta) |_{\eta=0}, \delta \eta \rangle = \frac{9}{2} \gamma \sin \theta \, e_{\varphi} \cdot (2 \text{Id} \Lambda) (\sin \theta \, \delta \eta \, e_{\varphi}) (\Delta_{\mathbb{S}^2} + 2 \text{Id}) \, \delta \eta,$ where Λ is the Dirichlet-to-Neumann map on the unit ball in \mathbb{R}^3 .
- 3. Via spherical harmonics we reduce the analysis to the spectral properties of an infinite matrix operator in weighted sequence spaces $\rightsquigarrow \Gamma$.
- 4. At $\gamma \in [0, \infty) \setminus \Gamma$ we use the implicit function theorem \rightsquigarrow (1).
- 5. At $\gamma \in \Gamma$ we employ the Crandall-Rabinowitz bifurcation theorem \rightsquigarrow (2).



↑ Pictures and References ↓

- 1] David Meyer, Lukas Niebel, and Christian Seis. Steady bubbles and drops in inviscid fluids, 2025. arXiv:2503.05503 to appear in Calc. Var. Partial Differential Equations.
- 2] David Meyer and Christian Seis. Steady ring-shaped vortex sheets, 2024. arXiv:2409.08220.