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The abstract problem

Given an operator A acting on a suitable function space X we are interested In
solutions u = u(t,x,v): [0, T] x R" x R"” — R of the kinetic Cauchy problem

0 -Vyu=A f
{tu+v Vi u U —+ (1)

u(0) =g,

where f, g are given data. For LP(X)-solutions with p € (1, 00), the natural
solution space Is

Z:={u: u, Oru+v-Vyu, Aue LP((0, T); X)}.

Goal 1: Show the existence of a unique solution u € Z to equation (1) with
g=01if f € LP((0,T); X).
If A has this property we say that A admits kinetic maximal LP(X)-regularity.

Goal 2: Investigate the temporal trace of functions in Z and characterise the
trace space In terms of accessible function spaces. This yields solvability of
the Cauchy problem with nonzero initial value.

The most important example

For B € (0, 2] consider the (fractional) Kolmogorov equation in R%",

Oru+ v -Vyu= —(—Av)gu +f
u(0) = g.

For strong LP-solutions we choose X = LP(IR?") and the solution space is
Z =Au: u, Oru+v-Vyu, (—Av)gu c LP((0,T); LP(R*"))}.

The operator A = —(—A,)P/?2 admits kinetic maximal LP(LP(R?"))-
regularity (Folland 1975, Chen/Zhang 2016).

The trace space. Using operator theoretic properties of the characteristics
(t,x,v)— (t,x — tv, v) we prove

Z — C([0, T]; LP(R*")).

Hence Xy = {g: Ju € Z with u(0) = g}, the trace space of Z, is well-
defined and Z — C(|0, T]; Xy). A theorem of Bouchut (2002) on kinetic
regularisation shows that

7 = 70 LP((0,T): HE P (R2"))

Hence, the trace space should also encode some reqgularity in x. Using the
fundamental solution combined with methods from harmonic analysis, we prove
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L%(l_l/p) (RQI?) M B,B(l—l/p) (RZH).
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Extensions

e Kinetic maximal regularity in Lebesgue spaces with temporal weights of
the form t1=# for u € (1/p, 1]. This allows us to consider initial values
with lower regularity and to see that solutions regularise instantaneously.

B (-
Xfy”u, ~ B'gglx(li 1/P)(R2n) N B,B(,u,—l/p)(RQn) if A — —(—Av)ﬁ/Q.

PP,V

e Different exponents of integrability, p in time and g In space.

e For g = 2 we characterize weak solutions to the (fractional) Kolmogorov
equation, cf. [1].

e Weights of the form (1+4|x—tv|?}/2, (1+|x|?+]|v[?)*/? and (1+|v|?)"/?
for J, k, | € R.
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More examples

The linearization of many nonlinear kinetic equations leads to the (fractional)
Kolmogorov equation with variable coefficients.

The characterisation of strong LP-solutions for the Kolmogorov equation can
be extended to

O:u+ v -Vyu=a(t,x,v): Viu+b-Vyu+cu+f
u(0) =g

provided that 0 < A < a(t, x,v) <A, b€ L, c € L*° and that
e (t,x,v)— a(t,x,v) is uniformly continuous or
o (t,x,v)r— a(t,x+ tv,v) is uniformly continuous, see [2].

Moreover, we can treat the case that a 1s not uniformly elliptic.
In [3] we prove kinetic maximal LP-regularity for non-local operators with vari-
able coefficients

a(t,x, v, h)
Ih‘n-l—,ﬁ’

[Aul(t, x,v) =p.v. IR{n(u(t,x, v+ h)—u(t, x,v))

dh,

where a is symmetric in h, satisfies a similar continuity property in (t, x, v) and
IS also Holder continuous In v.

An application

The precise solution theory allows studying quasilinear kinetic partial differ-
ential equations of the type

Oru~+ v -Vyu=Alu)u+ F(u)
u(0) = up.

We are interested in LP(X) solutions, that is functions u such that
Oru~+ v -Viu, A(u)u € LP(X). Under a local Lipschitz assumption on the
mappings A and F, we prove local (in time) existence for all ug € X, such that
A(ug) admits kinetic maximal LP(X)-regularity.

Here, the precise characterisation of the trace space Is used to access embed-
ding theorems, which allows controlling the nonlinearities.

Examples:

e A quasilinear diffusion problem, A(w)u = V, - (k(w)V,u) for suitable
functions k.

e [ he Vlasov-Poisson-Fokker-Planck equation without friction

oru—+v-Vyu—VE-Vou=0cA,u
—NAE =7 [, u(t, x, v)dv,

where ¢ > 0 and E = E(t, x) is the induced electric/gravitational
(vy=—-1/y=1) field.

Ongoing research

e Establish kinetic maximal LP-regularity for more operators, such as for
example the kinetic Fokker-Planck equation A u=A,u+v-V,u.

e Study weak LP-solutions to the Kolmogorov equation.

e Study the local existence of solutions for more sophisticated quasilinear
equations, e.g. the Landau equation.

e Global in time existence for quasilinear kinetic PDEs. Here, one needs
to Incorporate a priori estimates from the kinetic De Giorgi-Nash-Moser
theory.




