v

 $\overline{\mathsf{X}}$

v

v

 $\overline{\chi}$

v

v

 $\overline{\chi}$

Kinetic maximal L p -regularity

and applications to quasilinear equations

Lukas Niebel, Rico Zacher Institute of Applied Analysis, Ulm University

The abstract problem

Given an operator A acting on a suitable function space X we are interested in solutions $u = u(t, x, v)$: $[0, T] \times \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ of the kinetic Cauchy problem

where f, g are given data. For $L^p(X)$ -solutions with $p \in (1,\infty)$, the natural solution space is

 $Z := \{u : u, \partial_t u + v \cdot \nabla_x u, Au \in L^p((0,T);X)\}.$

Goal 1: Show the existence of a unique solution $u \in Z$ to equation (1) with $g = 0$ if $f \in L^p((0, T); X)$.

$$
\begin{cases} \partial_t u + v \cdot \nabla_x u = Au + f \\ u(0) = g, \end{cases}
$$
 (1)

Goal 2: Investigate the temporal trace of functions in Z and characterise the trace space in terms of accessible function spaces. This yields solvability of the Cauchy problem with nonzero initial value.

Hence $X_{\gamma} := \{ g : \exists u \in Z \text{ with } u(0) = g \}$, the trace space of Z, is welldefined and $Z \hookrightarrow C([0, T]; X_{\gamma})$. A theorem of Bouchut (2002) on kinetic regularisation shows that

Hence, the trace space should also encode some regularity in x . Using the fundamental solution combined with methods from harmonic analysis, we prove

> X_{γ} ∼ $\cong B$ $\frac{\beta}{\beta+1}(1\!-\!1/p)$ $\frac{\beta}{\beta+1}$ (1-1/*p*) (\mathbb{R}^{2n}) $\cap B_{pp,\nu}^{\beta(1-1/p)}(\mathbb{R}^{2n})$.

Extensions

The most important example

For $\beta \in (0, 2]$ consider the (fractional) Kolmogorov equation in \mathbb{R}^{2n} ,

The linearization of many nonlinear kinetic equations leads to the (fractional) Kolmogorov equation with variable coefficients.

 $\overline{\mathsf{X}}$

 $\overline{\chi}$

$$
\begin{cases} \partial_t u + v \cdot \nabla_x u = -(-\Delta_v)^{\frac{\beta}{2}} u + f \\ u(0) = g. \end{cases}
$$

For strong L^p -solutions we choose $X = L^p(\mathbb{R}^{2n})$ and the solution space is

 $Z = \{u : u, \partial_t u + v \cdot \nabla_x u, (-\Delta_v)\}$ β 2 $u \in L^p((0,T); L^p(\mathbb{R}^{2n}))$.

The operator $A = -(-\Delta_v)^{\beta/2}$ admits **kinetic maximal** $L^p(L^p(\mathbb{R}^{2n}))$ regularity (Folland 1975, Chen/Zhang 2016).

The trace space. Using operator theoretic properties of the characteristics

• $(t, x, v) \mapsto a(t, x + tv, v)$ is uniformly continuous, see [2].

The characterisation of strong L^p -solutions for the Kolmogorov equation can be extended to

Moreover, we can treat the case that a is not uniformly elliptic. In [3] we prove kinetic maximal L^p -regularity for **non-local** operators with variable coefficients

$$
Z = Z \cap L^{p}((0, T); H_X^{\frac{\beta}{\beta+1}, p}(\mathbb{R}^{2n})).
$$

The precise solution theory allows studying quasilinear kinetic partial differential equations of the type

More examples

We are interested in $L^p(X)$ solutions, that is functions u such that $\partial_t u + v \cdot \nabla_x u$, $A(u)u \in L^p(X)$. Under a local Lipschitz assumption on the mappings A and F, we prove local (in time) existence for all $u_0 \in X_\gamma$ such that $A(u_0)$ admits kinetic maximal $L^p(X)$ -regularity. Here, the precise characterisation of the trace space is used to access embedding theorems, which allows controlling the nonlinearities.

 $(t, x, v) \mapsto (t, x - tv, v)$ we prove

$Z \hookrightarrow C([0, T]; L^p(\mathbb{R}^{2n})).$

- A quasilinear diffusion problem, $A(w)u = \nabla_v \cdot (\kappa(w)\nabla_v u)$ for suitable functions κ .
- The Vlasov-Poisson-Fokker-Planck equation without friction

 \int $\partial_t u + v \cdot \nabla_{\mathsf{x}} u - \nabla_{\mathsf{x}} E \cdot \nabla_{\mathsf{v}} u = \sigma \Delta_{\mathsf{v}} u$ $-\Delta_x E = \gamma \int_{\mathbb{R}^n} u(t, x, v) dv$,

where $\sigma > 0$ and $E = E(t, x)$ is the induced electric/gravitational $(\gamma = -1/\gamma = 1)$ field.

$$
\begin{cases} \partial_t u + v \cdot \nabla_x u = a(t, x, v) : \nabla_v^2 u + b \cdot \nabla_v u + cu + f \\ u(0) = g \end{cases}
$$

provided that $0 < \lambda \le a(t, x, v) \le \Lambda$, $b \in L^{\infty}$, $c \in L^{\infty}$ and that

• $(t, x, v) \mapsto a(t, x, v)$ is uniformly continuous or

If A has this property we say that A admits **kinetic maximal** $L^p(X)$ -regularity.

- For $q = 2$ we characterize weak solutions to the (fractional) Kolmogorov equation, cf. [1].
- Weights of the form $(1+|x-tv|^2)^{j/2}$, $(1+|x|^2+|v|^2)^{k/2}$ and $(1+|v|^2)^{l/2}$ for j, $k, l \in \mathbb{R}$.
- Study the local existence of solutions for more sophisticated quasilinear equations, e.g. the Landau equation.
- Global in time existence for quasilinear kinetic PDEs. Here, one needs to incorporate a priori estimates from the kinetic De Giorgi-Nash-Moser theory.

$$
[Au](t, x, v) = p.v. \int_{\mathbb{R}^n} (u(t, x, v + h) - u(t, x, v)) \frac{a(t, x, v, h)}{|h|^{n+\beta}} dh,
$$

where a is symmetric in h, satisfies a similar continuity property in (t, x, v) and is also Hölder continuous in v .

• Kinetic maximal regularity in Lebesgue spaces with temporal weights of the form $t^{1-\mu}$ for $\mu\in (1/\rho,1]$. This allows us to consider initial values with lower regularity and to see that solutions regularise instantaneously.

 $X_{\bm{\gamma},\bm{\mu}}$ ∼ $\cong B$ $\frac{\beta}{\beta+1}(\mu\!-\!1/p)$ $\frac{\partial^2 H}{\partial p \partial x}(\mu^{-1/p}) (\mathbb{R}^{2n}) \cap B_{pp,\nu}^{\beta(\mu-1/p)}(\mathbb{R}^{2n})$ if $A = -(-\Delta_v)^{\beta/2}$.

An application

$$
\begin{cases} \partial_t u + v \cdot \nabla_x u = A(u)u + F(u) \\ u(0) = u_0. \end{cases}
$$

Examples:

Ongoing research

- \bullet Establish kinetic maximal L^p -regularity for more operators, such as for example the kinetic Fokker-Planck equation $Au = \Delta_v u + v \cdot \nabla_v u$.
- \bullet Study weak L^p -solutions to the Kolmogorov equation.

• Different exponents of integrability, p in time and q in space.

References

- [1] L. N. and R. Z. Kinetic maximal L^2 -regularity for the (fractional) Kolmogorov equation. Journal of Evolution Equations, 21, 2021.
- [2] L. N. and R. Z. Kinetic maximal L^p-regularity with temporal weights and application to quasilinear kinetic diffusion equations. Journal of Differential Equations, 307, 2022.
- [3] L. N. Kinetic maximal $L^p_\mu(L^p)$ -regularity for the fractional Kolmogorov equation with variable density. Nonlinear Analysis, 214, 2022.

