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Kinetic equations



Here: (t,x,v) € Q7 = (0, T) x Q, x Q, C R1*27,
Study particle density £ = f(t,x,v): Qr - R



Kolmogorov equation

Here: (t,x,v) € Q7 = (0, T) x Q, x Q, C R1*27,
Study particle density f = f(t,x,v): Q7 — R solution to

Of +v- -V, f =V, (a(t,x,v)V,f)+ S



Kolmogorov equation

Here: (t,x,v) € Q7 = (0, T) x Q, x Q, C R1*27,
Study particle density f = f(t,x,v): Q7 — R solution to

Of +v- -V, f =V, (a(t,x,v)V,f)+ S
with a: Q7 — R"*" measurable such that

(H1) M[€J* < (a(t, x, v)E, &) for all € € R” and ae. (t,x,v) € Q1
(H2) 3= laz(t,x, v)[> < A2 for ae. (t,x,v) € Qr
ij=1

and some constants 0 < A < A.

Moreover, S: Q1 — R a source term.



Kolmogorov equation

Here: (t,x,v) € Q7 = (0, T) x Q, x Q, C R1*27,
f=1f(t,x,v): Qr — R particle density solution to

Of +v-V,f =V, (a(t,x,v)V,F)
with a: Q7 — R™" measurable, elliptic and bounded.

- Rough coefficients.
- Fokker-Planck equation to the integrated Wiener process.
- (Simplified) Version of the linearised Landau equation.

- For a = Id Kolmogorov constructed fundamental solution in 1934.



Kolmogorov equation

Consider a = Id.

(Or+v-V)f=Af+S



Kolmogorov equation

Consider a = Id.

Hormander operator (type B) - hypoelliptic

(3t+v-vx)f228§if+5

i=1



Kolmogorov equation

Hormander operator (type B) - hypoelliptic
n
Xof =) X’f+S
i=1

where Xo = 0t + v -V and X; = 0,,.

[0y, 0y + v - Vi|f =0,,(0 +v -V )f — (0 + v-Vy) 0, f =0f



Kolmogorov equation

Hormander operator (type B) - hypoelliptic
n
Xof =) XPf+S
i=1
where Xo = 0t + v -V and X; = 0,,.
[avi,at +v- Vx]f = 8Vi(at +v- vx)f - (at +v- vX) aV[f = 8X,‘f

Theorem (Hormander '67):
Assume rank condition. If S € C*®, then f € C*°.




Kinetic geometry

Of +v-V,uf =A,f

Scaling invariance:
A= (A2t A3x, Av)
Translation invariance:

(to,Xo, Vo) — (t — to, X — Xo — (t = I‘())Vo7 vV — Vo)



Kinetic geometry

Of +v-V,uf =A,f

Scaling invariance:
A= (A28, A3x, Av)
Translation invariance:
(to, x0, vo) — (t — to,x — x0 — (t — to)vo, Vv — vp)
Kinetic cylinders:
Qr(to, x0, V0)
={-rP<t—t<0, |x—x0— (t—to)w| < r’, |v—vo| <r’}

Can work at unit scale from now on.



Energy estimate

Testing (1) with f¢? for a cutoff function ¢ yields (formally):

0 0
sup / |f(t,~)|2d(x,v)+/ / |va|2d(t,x,v)§/ / I d(t, x, v)
tG(fl,O] Bl(O) -1 Bl(O) -2 BQ(O)

Natural solution space

LX(L2,) N L2 (H7)



Weak solutions

Definition:
A function f € L°L2 (Q7) N L2, HL(Q7) is a weak (sub-, super-)

t,x"' v

solution to (1) if for all ¢ € C2°(27) with ¢ > 0 we have

/[—f(@t +v-Vy)p+(aV,f,V,p)]d(t,x,v) = (>, S)/Scpd(t,x, V).
(0, T)xR2" (0,T)xR2n



Weak solutions

Definition:
A function f € L°L2 (Q7) N L2, HL(Q7) is a weak (sub-, super-)

t,x"' v

solution to (1) if for all ¢ € C2°(27) with ¢ > 0 we have

/[—f(at +v-Vy)p+(aV,f,V,p)]d(t,x,v) = (>, S)/Scpd(t,x, V).
(0, T)xR2" (0,T)xR2n

Literature:

- Regularity, existence and uniqueness of weak solutions together
with P. Auscher and C. Imbert 24

- previous works: Carrillo 98, Albritton-Armstrong-Mourrat-Novack 24,
N.-Zacher 21, Nystrom-Litsgard 21



What can we say a priori about the

regularity of weak (sub-, super-) solutions?



De Giorgi-Nash-Moser theory

SULLA DIFFERENZIABILITA E L’ ANALITICITA
DELLE ESTREMALI‘
DEGLI INTEGRALI MULTIPLI REGOLARI *

Memoria di ENN10 DE GIORGI |
dal Socio nazionale non resi Mauro PicoNE

nell’adunanza del 24 Aprile 1957

Ri — St studi le ests Ii di alouns integrali multipli vegolari, sup-
ponendo nota a priori Vesistenza delle derivate parzialy prime di quadyato som-
mabile; si dimostra il carvatters hilderiano di tali derivate, da cui seguomo
Vindefinita differenziabilitd e Vanaliticita delle zstrm‘ah‘

In questo lavoro mi occupo delle proprietd d.lfferenznall e specialmente

ell’analiticitd delle estremali  degl’integrali multlph regolari; tale ‘argo-
mento ¢ stato oggetto di molte ricerche da parte di matematici italiani e
stranieri, sicch® appare assai difficile dame un quadro bibliografico com-
pleto; ci limiteremo quindi a citare qualche lavoro da cui il lettore potra
facilmente ricavare pilt ampie informazioni. Ricorderemo cosi i risultati
di Hopf (3] (¥), Stampacchia [g], Morrey [6], che danno teoremi di ‘diffe-
renziabilita ed analiticitd per estremali sempre meno regolari: prec1sa-
mente si richiede I'esistenza di derivate seconde hélderiane-in [3], di ‘deri-
vate nrime halderiane in fol. di derivate prime continue in [6]. A’ un di-



De Giorgi-Nash-Moser theory

CONTINUITY OF SOLUTIONS OF PARABOLIC AND
ELLIPTIC EQUATIONS.*

By J. NasH.

Introduction. Successful treatment of non-linear partial differential
equations generally depends on “a priori” estimates controlling the behavior
of solutions. These estimates are themselves theorems about linear equations
with variable coefficients, and they can give a certain compactness to the class
of possible solutions. Some such compactness is necessary for iterative or
fixed-point techniques, such as the Schauder-Leray methods. Alternatively,
the a priori estimates may establish continuity or smoothness of generalized
solutions. The strongest estimates give quantitative information on the con-
tinuity of solutions without making quantitative assumptions about the con-
tinuity of the coefficients.



De Giorgi-Nash-Moser theory

COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, VOL. X1V, 577-591 (1961)

K. O. Friedvicks anniversary issue

On Harnack’s Theorem for Elliptic
Differential Equations”

JURGEN MOSER

1. Introduction

The theorem of Harnack referred to in the title is the following: If wisa
positive harmonic function in a domain D, then in any compact set D’
contained in D the inequality
(1.1) max # < ¢ min u,

3 D
holds where the constant ¢ > 1 depends on D and D’ only. Equivalently, if



De Giorgi-Nash-Moser theory

COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, VOL xvi, 101-134 (1964)

A Harnack Inequality for Parabolic
Differential Equations’

JURGEN MOSER

1. Introduction

(a) This paper is concerned with weak solutions of a parabolic differential
equation
Ou L Ou
1.1 == — 1, %)) =
(1.1 PR N (@t %) 3,

with variable coeflicients a,(t, x). It is our aim to derive statements about the
pointwise behavior of the solutions even if the coefficients are only measurable
functions satisfying



De Giorgi-Nash-Moser theory

COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, VOL. XXIV, 727-740 (1971)

On a Pointwise Estimate for Parabolic
Differential Equations®

J. MOSER

§1. The purpose of this note is to describe a simplified proof of a theorem
on linear parabolic differential equations which was published earlier in this
journal (cf. [6]). This theorem gives a pointwise estimate for positive weak
solutions of linear parabolic differential equations and is usually referred to as
the Harnack inequality since it generalizes a classical inequality by Harnack for
positive harmonic functions. The proof of this theorem for parabolic equations
with variable coefficients uses a collection of a priori estimates for the powers and
the logarithm of the solutions which are played out against each other with the
help of general inequalities, primarily consequences of Sobolov’s inequality.
At one point, however, our previous argument required a new estimate (called
Main Lemma in [6]) which generalizes an interesting theorem by F. John and
L. Nirenberg. The proof of this lemma is quite intricate and it was desirable to
avoid it entirely.



Moser's 1971 method

Sobolev inequality

testing with ¥

\/

Moser iteration

A,

A

testing with 1

Poincaré inequality

\/

[P—[*° estimates

weak L'-estimate for the logarithm

—= ==

Lemma of Bombieri and Giusti

Y

Harnack inequality

Y

Holder continuity




Goal:
Moser’'s 1971 method in kinetic theory



Kinetic De Giorgi-Nash-Moser theory



LP — [°°-estimates

World Scientific

Communications in Contemporary Mathematics \\
www.worldscientific.com

Vol. 6, No. 3 (2004) 395-417
© World Scientific Publishing Company

THE MOSER’S ITERATIVE METHOD FOR A CLASS OF
ULTRAPARABOLIC EQUATIONS

ANDREA PASCUCCI* and SERGIO POLIDOROT

Dipartimento di Matematica, Universita di Bologna,
Piazza di Porta S. Donato 5, 40126 Bologna, Italy
*pascucci@dm.untbo.it
1 polidoro@dm.unibo. it

Received 7 August 2002
Revised 21 May 2003

‘We adapt the iterative scheme by Moser, to prove that the weak solutions to an ultra-
parabolic equation, with measurable coefficients, are locally bounded functions. Due to
the strong degeneracy of the equation, our method differs from the classical one in that
it is based on some ad hoc Sobolev type inequalities for solutions.



LP — L°° estimates

Theorem (Pascucci-Polidoro 04):

Let 6 € (0,1), 06 < r < R < 1. There exists C(n,\,\,d) >0
such that any positive weak solution f to (1) satisfies

SUpr S m/f"d(t,x, V) p<0,
Qr 0

Sgp fP S m / fpd(t,X, V) p > 0.
' Qr

Q7 Qr

LP y [ o© LP - [

(x;v)

L.,



Holder continuity

World Scientific

Communications in Contemporary Mathematics \
www.worldscientific.com

Vol. 13, No. 3 (2011) 375-387
© World Scientific Publishing Company
DOI: 10.1142/50219199711004385

THE C* REGULARITY OF
A CLASS OF ULTRAPARABOLIC EQUATIONS

LIQUN ZHANG

Institute of Mathematics, AMSS
Academia Sinica, Beijing, P. R. China
and
Hua Loo-Keng Key Laboratory of Mathematics
Chinese Academy of Sciences, Beijing, P. R. China
lgzhang@math.ac.cn

Received 18 September 2008
Revised 28 June 2009

We prove the C* regularity for weak solutions to a class of ultraparabolic equation,
with measurable coefficients. The result generalized our recent C* regularity results of
Prandtl’s system to high dimensional cases.



Holder continuity

Theorem (Zhang 11, Wang & Zhang 09,11):

Let £ be a weak solution to (1) and Q CC Q7. Then, there
exist constants ¢, C > 0 such that f € 5 (Q) and

IFlles. (@) < € I1Flligry

Qr

(x,v)
T t



Harnack inequality

Ann. Sc. Norm. Super. Pisa Cl. Sci. (5)
Vol. XIX (2019), 253-295

Harnack inequality for kinetic Fokker-Planck equations
with rough coefficients and application to the Landau equation

FRANCOIS GOLSE, CYRIL IMBERT, CLEMENT MOUHOT
AND ALEXIS F. VASSEUR

Abstract. We extend the De Giorgi-Nash-Moser theory to a class of kinetic
Fokker-Planck equations and deduce new results on the Landau-Coulomb equa-
tion. More precisely, we first study the Holder regularity and establish a Harnack
inequality for solutions to a general linear equation of Fokker-Planck type whose
coefficients are merely measurable and essentially bounded, i.e. assuming no
regularity on the coefficients in order to later derive results for non-linear prob-
lems. This general equation has the formal structure of the hypoelliptic equations
“of type II”’, sometimes also called ultraparabolic equations of Kolmogorov type,



Harnack inequality

Theorem (GIMV 19):

There exists a universal const C = C(n, A, A) > 0 such that for
any nonnegative weak solution f of (1) in Q we have

supf < Cinf f.
Q- Q+
Q- Q+
Supf inf
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Towards Moser’'s 1971 method in kinetic theory

Sobolev inequality

testing with ¥

\/

Moser iteration

A,

A

testing with 1

Poincaré inequality

\/

[P—[*° estimates

weak L'-estimate for the logarithm

—= ==

Lemma of Bombieri and Giusti
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Harnack inequality
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Holder continuity




Towards Moser’'s 1971 method in kinetic theory

Sobolev inequality

testing with ¥

\/

Moser iteration

testing with 1 Poincaré inequality

\/

[P—[*° estimates

weak L'-estimate for the logarithm

— ==

Lemma of Bombieri and Giusti

Y

Harnack inequality

Y

Holder continuity




The logarithm

Suppose that f is a positive weak supersolution to
Oif +v-Vif =V, (a(t,x,v)V,f)
then the g = log f is a weak supersolution to

ohg+v-Vyg=V, (aV,g)+ (aV,g,V,g).



Lemma of Bombieri and Giusti

Lemma (Moser 71, Bombieri and Giusti 72):

Let (X, v) be a finite measure space, U, C X, 0 < o < 1 measurable
with U,y C Uy if o' < o. Let G, >0,6 € (0,1), i>1,v>0.
Suppose 0 < f: U; — R satisfies the following two conditions:

-forall0<d<r<R<1land0< p<1/fi we have

G /
supfP< ——— — fPdv
= (R=ryw(Uy)

U
- su({log f > s}) < Gji v(Uy) for all s > 0.

Then

sup f < CH,
Us

where C = C(Gy, (2,0, 7).



Towards Moser’'s 1971 method in kinetic theory

Sobolev inequality

testing with ¥

\/

Moser iteration

testing with 1 Poincaré inequality

\/

[P—[*° estimates

weak L'-estimate for the logarithm

— ==

Lemma of Bombieri and Giusti

Y

Harnack inequality

Y

Holder continuity




Jerison’s Poincaré inequality

Theorem (Jerison 86):

Let Xi,...,Xm be smooth vector fields satisfying Hormanders

rank condition. Then,

If — fg|?d < Cr2/ > IXif| dx.
Br Bri=1

Here, B, are balls with respect to a natural metric.



Jerison’s Poincaré inequality - kinetic?

Theorem (Jerison 86):

/\f—fQ|dtxv /latf—i-v Vo f|? + |V 2 d(t, x, v).

Here, Q, are kinetic cylinders.



Jerison’s Poincaré inequality - kinetic?

Theorem (Jerison 86):
We have

/ |f — fo. 2 d(t, x, v) < Cr2/ |8:F 4+ v - Vif > + |V, FI2d(t, x, v).
Qr Qr

Here, Q, are kinetic cylinders.

Need to treat O;f + v - Vyf =V, - h, for some h € L? at the correct scale.



Kinetic Poincaré inequality

Theorem (Guerand & Mouhot 22, N. & Zacher 22):

Let g € L}(Q;R") and ¢? be supported in @ . Then, there
exists a constant C = C(n, ¢) > 0 such that for all
subsolutions f > 0 to (1) in Q we have

(7 =P o) oy < € (19 Flliay + 1Allrca))

Q Q1

O

(x,v)
T




Kinetic Poincaré inequality

Theorem (Guerand & Mouhot 22, N. & Zacher 22):

Let g € L}(Q;R") and ¢? be supported in @ . Then, there
exists a constant C = C(n, ¢) > 0 such that for all
subsolutions f > 0 to (1) in Q we have

[ =450 )e | gy < € (194 F ey + sy

Spacetime Poincaré inequalities are “too weak” .



Trajectories

Euclidean (v) - Poincaré inequality:

1
F(v) — F(w) = /0 %f(w iy — )ik



Trajectories
Euclidean (v) - Poincaré inequality:
Ld
F(v) — F(w) = / Lt r(v—w))dr
0 dr
Parabolic 7 (t, v)

1
Flev) = Fnw) = [ ()

with v: [0,1] — R x R” with v(0) = (1, w) and (1) = (¢, v).



Trajectories
Euclidean (v) - Poincaré inequality:
Ld
F(v) — F(w) = / Lt r(v—w))dr
0 dr
Parabolic 7 (t, v)

1
Flev) = Fnw) = [ ()

with v: [0,1] — R x R” with v(0) = (1, w) and (1) = (¢, v).

Parabolic trajectory: v(r) = (n+ r(t — n), w + r'/?(v — w))



Trajectories
Euclidean (v) - Poincaré inequality:
Ld
F(v) — F(w) = / Lt r(v—w))dr
0 dr

Parabolic 7 (t, v)

with v: [0,1] — R x R” with v(0) = (1, w) and (1) = (t,v).

Parabolic trajectory: v(r) = (n + r(t — n),w + r'/?(v — w))



Moser's 1971 method and parabolic trajectories

A TRAJECTORIAL INTERPRETATION OF MOSER’S PROOF OF THE
HARNACK INEQUALITY

LUKAS NIEBEL" AND RICO ZACHER

ABSTRACT. In 1971 Moser published a simplified version of his proof of the parabolic Har-
nack inequality. The core new ingredient is a fundamental lemma due to Bombieri and
Giusti, which combines an L? — L>-estimate with a weak L!-estimate for the logarithm of
supersolutions. In this note, we give a novel proof of this weak L!-estimate. The presented
argument uses parabolic trajectories and does not use any Poincaré inequality. Moreover,
the proposed argument gives a geometric interpretation of Moser’s result and could allow
transferring Moser’s method to other equations.



Towards Moser’'s 1971 method in kinetic theory

Sobolev inequality testing with ¥

~

Moser iteration testing with £~ |' Parabolic trajectories
Y \/
LP—L>° estimates weak L!-estimate for the logarithm

— ==

Lemma of Bombieri and Giusti

Y

Y

Harnack inequality Holder continuity




Kinetic trajectories

Can we walk from (t,x,v) to (n,y,w) along 9: + v -V, and 0,,,...0,,7?

(n,y,w)



Kinetic trajectories

Can we walk from (t,x,v) to (n,y,w) along 9: + v -V, and 0,,,...0,,7?

(t,x,v)

(n,y,w)



Kinetic trajectories

Can we walk from (t,x,v) to (n,y,w) along 9: + v -V, and 0,,,...0,,7?

(t,x,v)
°
: 1.y, )
| )
! Btv-V,  _.-oTT
Vv: ‘ f,/ ' Vy
: .
: ,,”‘ ny,w
(t X‘;—X)
' "t



Kinetic trajectories

Can we walk from (t,x,v) to (n,y,w) along 9: + v -V, and 0,,,...0,,7?

n

(t,x,v)
°
: (n,y,2=%)
| e
! Betv Ve .-
Vv: ‘ Leo®” ' Vy
: :
E ’,,”‘ (777y7W)
‘/,,
=)

J. Guerand and C. Mouhot. Quantitative De Giorgi methods in kinetic theory, J. Ecole polytech. - Math. 9 (2022), 1159-1181.



Kinetic trajectories

Can we walk from (t,x,v) to (n,y,w) along 9: + v -V, and 0,,,...0,,7?
L. N. and R. Zacher. On a kinetic Poincaré inequality and beyond, arXiv:2212.03199 (2022).

(t,):, v)

7.y7W
V\/ 8t+V'VX (,'7. )



Kinetic trajectories

Definition:

Let (t,x,v) and (n,y,w) € R™2" with n # t. A kinetic trajectory
is a map

v =(r) =(ri (t,x,v), (, y, w)) = (7e(r), 1x(r), w(r)) € RF2"
defined for r € [0, 1] that is

- continuous on r € [0, 1] (and in particular bounded),

- differentiable on r € (0, 1),

- with endpoints 7(0) = (¢, x,v) and (1) = (n,y, w),

- satisfying the constraint 7. (r) = 4:(r)7,(r) for r € (0,1).



Kinetic trajectories

Definition:

Let (t,x,v) and (n,y,w) € R™2" with n # t. A kinetic trajectory
is a map

v =(r) =(ri (t,x,v), (, y, w)) = (7e(r), 1x(r), w(r)) € RF2"
defined for r € [0, 1] that is sufficiently smooth

- with endpoints 7(0) = (¢, x,v) and (1) = (n,y, w),

- satisfying the constraint . (r) = :(r)7.(r) for r € (0,1).

For g: R*2" — R smooth

%g(’v(f)) = Ye(r)[0cg] + 3x(r) - [Vxgl(7(r)) + 3(r) - [Vl (7(r))



Kinetic trajectories

Definition:

Let (t,x,v) and (n,y,w) € R™2" with n # t. A kinetic trajectory
is a map

v =(r) =(ri (t,x,v), (, y, w)) = (7e(r), 1x(r), w(r)) € RF2"
defined for r € [0, 1] that is sufficiently smooth

- with endpoints 7(0) = (¢, x,v) and (1) = (n,y, w),

- satisfying the constraint . (r) = :(r)7.(r) for r € (0,1).

For g: R*2" — R smooth

%g(’v(r)) = Ye(r)[0:g] + 7 (r) - [Vxgl(v(r)) + 2 (r) - [Vvel(r(r))

76(r)[0eg + v - Vxgl(v(r)) + 4 (r) - [Vvel(v(r))-



Literature on trajectories

- Early works by Carathéodory 09, Rashevskii 38 and Chow 309.

- Breakthrough by Nagel, Stein and Wainger 85.

- Lots of works on Geometric Control theory.

- Trajectorial proof of Jerison's Poincaré inequality by
Lanconelli-Morbidelli 00.

- Kinetic trajectories are constructed in Pascucci-Polidoro 04.

In none of these results Xy and Xi, ..., Xy, are treated at the right scale.



Critical kinetic trajectories

Today 4 =n — t.



Critical kinetic trajectories

Today 4 =n — t.

A kinetic trajectory is called a critical kinetic trajectory

if it additionally satisfies

‘(Vy,wv(r: (t,x,v), (n,y, w))—l),;z‘ ~ [ ()] ~ r2

asr— 0, r#0.



Critical kinetic trajectories

Today 4 =n — t.

A kinetic trajectory is called a critical kinetic trajectory
if it additionally satisfies

1
2

(T (s (:3,0), 00,y )78 | ~ T ~ 7

asr— 0, r#0.

Trajectories constructed in N.-Zacher 22 are not critical.
Neither are the ones in the follow-up work:

F. Anceschi, H. Dietert, J. Guerand, A. Loher, C. Mouhot, and A. Rebucci.
Poincaré inequality and quantitative De Giorgi method for hypoelliptic operators, 2024.



Critical kinetic trajectories

Lemma (DMNZ 24):

There exists a family of critical kinetic trajectories given by

Ve(r) t+(n—t)r
() ooy
with properties such as
- Ap_(0) = 0, A,_(1) = Idy, and B,_(0) = Idan, By_¢(1) =0
- det A,_(r) = r?", det B, _¢(r) = (1 — r)?"
- spatial uniform control v(r) € Q

g 1
- criticality, i.e. |9 | < r72 and

’(VY7W7(r; (t7X7 V)7 (naya W))il).ﬁ‘ = ‘(A;_lt)g‘ < I’_%.



Construction of kinetic trajectories

Ansatz:
Ye =mn — t and 7, = go(r)mo + g1(r)m1
for two forcings go, g1: [0,1] — R and vectorial parameters mg, m; € R".



Construction of kinetic trajectories

Ansatz:
Ye =mn — t and 7, = go(r)mo + g1(r)m1
for two forcings go, g1: [0,1] — R and vectorial parameters mg, m; € R".

Integration yields

(r) = o(r)mo + &1(r)my

Y(r) = go(r)mo + g1(r)my + v.



Construction of kinetic trajectories

Ansatz:
Ye =mn — t and 7, = go(r)mo + g1(r)m1
for two forcings go, g1: [0,1] — R and vectorial parameters mg, m; € R".

Integration yields

Y (r) = &o(r)mo + g1(r)my

Y(r) = go(r)mo + gi(r)my +v

A kinetic trajectory needs to satisfy

P(r) = Fe(N)n(r) = (n = t)go(r)mo + (n — t)gu(r)m: + (1 — t)v



Construction of kinetic trajectories

Ansatz:
Ye =mn — t and 7, = go(r)mo + g1(r)m1
for two forcings go, g1: [0,1] — R and vectorial parameters mg, m; € R".

Integration yields
(r) = &(r)mo + g1(r)m:
Y (r) = go(r)mo + g1(r)my + v
A kinetic trajectory needs to satisfy
Yx(r) = (n = t)go(r)mo + (n — t)&(r)my + (n — t)v

Yx(r) = (n — t)go(r)mo + (n — t)g1(r)m1 + (n — t)rv + x



Construction of kinetic trajectories

Ansatz:
Ye =mn — t and 7, = go(r)mo + g1(r)m1
for two forcings go, g1: [0,1] — R and vectorial parameters mg, m; € R".

Integration yields

Y (r) = &(r)mo + g1(r)m + v

Wx(r) = (n = t)go(r)mo + (n — t)gu(r)my + (n — t)rv + x
Endpoint condition determines the vectorial parameters

Yx(1) = (n—t)go()mo + (n — t)gr()m1 + (n —t)v+x=y

(1) =g(1)mo+g&(1)mi +v=w



Construction of kinetic trajectories

Ansatz:
Ye =mn — t and 7, = go(r)mo + g1(r)m1
for two forcings go, g1: [0,1] — R and vectorial parameters mg, m; € R".

Integration yields

W(r) = &o(r)mo + g1(r)my + v

Wx(r) = (n = t)go(r)mo + (n — t)gu(r)my + (n — t)rv + x
Endpoint condition determines the vectorial parameters

(n—t)go(1)mo + (n — t)gr(I)my + (n —t)v+x =y

go(l)mo+g(l)m+v=w

Criticality is achieved for a good choice of the forcing.



Weak L!-estimate for log f (1) Bf + v - Vif =V, - (aV,f)

Theorem (DMNZ 24):

Let 6,7 € (0,1) and € > 0. Then for any supersolution f > ¢ > 0 to (1)
there exists a constant C = C(n,d,n, A, A\) > 0 such that

s|{(t,x,v) € K_: logf(t,x,v) —c(f) >s}| < C
s|{(t,x,v) € Ky:c(f) —logf(t,x,v) >s} < C

for all s > 0 with c(f) = Ci /B log (1, y, w)e3(y, w)d(y, w).
©

(x,v)
T

+
~



Proof of the weak L!-estimate

Unit size. a = Id for simplicity. Goal:

s|{(t,x,v) € K_: log f(t,x,v) —c(f)>s}|<C, s>0

K_ K.




Proof of the weak L!-estimate

Recall

tﬂMHn% w)d(y, w).
where

%—/ﬁwWw%m
B



Proof of the weak L!-estimate

Recall

/ llog £1(7, y, W)y, w)d(y, w).

Note that
s{(t,x,v) € K_: log(f) — c(f) > s}

< 0/ B/ (llog F1(t, x, v) — c(F)) (. x, v)



Proof of the weak L!-estimate

Recall

/ llog £1(7, y, W)y, w)d(y, w).

Note that

s{(t,x,v) € K_: log(f) — c(f) > s}

n—t

< / ‘/i([log f1(t, x,v) — c(f))+d(t, x, v)
0 B



Proof of the [!-estimate

Recall
o(f) = i / llog £1(7,y, ) (y, w)d(y, w).
B

Goal: estimate
7] L

\

/ [log f](t,x,v) — c(f))4+d(t,x,v) < C
0

by a constant.
L1-Poincaré inequality in spacetime without a gradient.



Proof of the [!-estimate

Recall
o(f) = i / llog £1(7,y, ) (y, w)d(y, w).
B

Goal: estimate
7] L

/ [log f](t,x,v) — c(f))4+d(t,x,v) < C

\

0

by a constant.
L1-Poincaré inequality in spacetime without a gradient.
Recall: if f is supersolution to (1), then g = log f is a supersolution to

atg +v- vxg = Avg + |vvg|2



Proof of the L!-estimate
For g = log f we have

g(t,x,v) - c(f)
. [ (&(t.x.) — 0.y, w)) 2. w)d(y. w)

/ [ st 2. wat.w



Proof of the L!-estimate
For g = log f we have

g(t.x,v) — c(f)
:i [ (&(t.x.) — &(1.y. W) 2. w)d(y. w)

/ / )dr ¢2(y, w)d(y, w)

_5/5/0 Y:(r)[0:g + v - Vig)(7(r)) + A (r) - [Vigl(v(r))dr ¢*d(y, w)



Proof of the L!-estimate
For g = log f we have

g(t.x,v) — c(f)
:i [ (&(t.x.) — &(1.y. W) 2. w)d(y. w)

/ / )dr ¢2(y, w)d(y, w)

_/ / Ye(r)[0eg + v - Vxgl(7(r)) + v (r) - [Vvgl(7(r))dr ¢*d(y, w)

< / / (A1) + [V vel? (4(7)dr 2(y, w)d(y, w)

Cso

// A (r) - [Vvgl(y(n)dr ¢*(y, w)d(y, w)



Proof of the L!-estimate
For g = log f we have

g(t.x,v) — c(f)
:i [ (&(t.x.) — &(1.y. W) 2. w)d(y. w)

/ / )dr ¢2(y, w)d(y, w)

_/ / Ye(r)[0eg + v - Vxgl(7(r)) + v (r) - [Vvgl(7(r))dr ¢*d(y, w)

< / / (A1) + [V vel? (4(7)dr 2(y, w)d(y, w)

Cso

// A (r) - [Vvgl(y(n)dr ¢*(y, w)d(y, w)

Idea: use quadratic gradient term to absorb all gradients



The forcing terms

Recall that |,| < r~2, hence
_i 1' r) - r r 2 w w
= L |30 eslotdr 2wy, w)
S [ [ 9l Gonar et witw)



Partial integration

/ A, gl (1 ()3, w)d(y, w)



Partial integration

Substitute (7, W) = ®(y, w) = Pr ¢ vy, w) = (9(r), 1 (r)).
180wty w)

/ [Avg](re(r), 7, W) (©7X(F, @) [det A2 d(7, W)
o(B)



Partial integration

Substitute (7, w) = ®(y,w) = <I>r,t’x,v7,7(y7 w) = (7x(r), 7 (r))-
/[Avg] N)eRly, widly, w)
- / [Avg](re(r), 7, W) (©7X(F, @) [det A2 d(7, W)
»(B)
—_ /¢ o [T081000). 7.5, 92075, ) et Al (7, 9

= —2/ (Vo8] (e(r), 7. W), [Vl (71 (7, ) (A(r)1).2)
®(B)

p(O7H(7, W)) - |det A7 (7, W)



Partial integration

Substitute (7, w) = ®(y,w) = <I>r,t’x,v7,7(y7 w) = (7x(r), 7 (r))-
/[Avg] N)eRly, widly, w)
- / [Avg](re(r), 7, W) (©7X(F, @) [det A2 d(7, W)
»(B)
—_ / (Vv&l(re(r), 5. ), Vo 2(07X(7, @))) |det A~ (7, w)
»(B)
=2 [ (ol 5 9. [Tl (025 ))(A) )
»(B)

P(O7Y(F, W)) - |det A" d(7, W)
= —2/B<[va](7(r)),[Vs0]T(y, w)(A(r)™)2)e(y, w)d(y, w)

<2 /B Vo8] (1())ely, w)d(y, w),



Distributing the good term

)+

(8(t,x) - e(f
1
S [ (M2 190 GOty w) = 1Vl ()0 ) dlywide

for some constant M > 0.



Integrating on K_

/"—/ (t,x,v) f)+d(t, x, v)

_/0 /B/O/B M, 1/2|va|(7(r))90(yyw)*|va‘2(fy(r))¢2(y,W))J(ri(y,w)drd(t,x,v)



Integrating on K_

/"—/ (t,x,v) f)+d(t, x, v)

/ /// Mr Y2 Vgl (v(r)ely, w) — [Vvegl? (1(n)@* (v, w))g(y, w)drd(t, x, v)
-/, / [ (M7 19,81 GOty w) = Ve (1) (- ) dly wdra(e,x, )
/O/B/1 /B Mr Y21V, (v(r ))@(%W)—\va\Q(w(r))eoz(%W))f(%W)drd(t,x,v)



Integrating on K_

[ [stexn - ctmatexn
<[ / (M2 9.l ()l W)*Iva\Z(’Y(f))Sf(y,W))d(y,W)drd(t,X,v)
P oty
////’V’f Y2 |9,g] (v(r)) ey, w) — Vgl (1(r)*(y, w

)
////M’ V2 1Vgl (V(N)ely, w) = [Vugl® (1(n)e® yw) (v, w)drd(t, x, v)

+C=h+C

w)drd(t, x, v)

d(y,

i

d(y, w)drd(t, x, v)
¥

for some C > 0 by Cauchy-Schwarz inequality.



Substitute (X, 7) = W, ¢y yw(x, v) :=yxv(r) and t =t + r(n — t).

=[] [ % [ (M2 9] )ty w) = IV ()P m)
d(y, w)drd(x, v)dt



Substitute (X, 7) = W, ¢y yw(x, v) :=yxv(r) and t =t + r(n — t).

<[ [ g, (M7 21981 (5 D0ty ) = 9, (590620, w),

—|detB( )7t d(&, v)dEd(y, w)dr



Substitute (X, 7) = W, ¢y yw(x, v) :=yxv(r) and t =t + r(n — t).

2 n . .
hs [F [ (M2 (90 5 0)elw) - Vgl (5, 9)6% 0 w)
0 BJO B +
d(x, v)dtd(y, w)dr

as U(B) C B and det B(r) ~ 1 on (3,1).



Substitute (X, 7) = W, ¢y yw(x, v) :=yxv(r) and t =t + r(n — t).
3 n . .
hs [F [ (M2 (90 5 0)elw) - Vgl (5, 9)6% 0 w)
o JeJo JB +
d(x, v)dtd(y, w)dr

as U(B) C B and det B(r) ~ 1 on (3,1).

Calculating the r-integral from 0 to min{1/2, M?/p?} yields
1/2
/ (r_1/2l\/lp — p2> dr < M2
0 +

for all p > 0. Here p = |V, g]| (£, X, V)o(y, w).



Moser's 1971 method in kinetic theory

Sobolev inequality testing with ¥

\./

Moser iteration testing with 1 Kinetic trajectories
Y \/
LP—L > estimates weak Ll-estimate for the logarithm

— =

Lemma of Bombieri and Giusti

Y

Y

Harnack inequality Holder continuity




Harnack inequality

Theorem (DMNZ 24):

There exists a universal const C = C(n, A\,\) > 0 such that for
any nonnegative weak solution f of (1) in Q we have

supf < Cinf f.
Q- Q+
Q- Q+
Supf inf




Harnack inequality

Theorem (DMNZ 24):

There exists a universal const C = C(n) > 0 such that for
any nonnegative weak solution f of (1) in Q we have

supf < CHinff.
Q- Q+

Here, u = % + A if a is symmetric. Optimal!

Q Q,
sup f inf f




Weak Harnack inequality

Theorem (DMNZ 24):

There exists a universal C(n, 1) > 0 such that for all p € (0,1 + )
and any nonnegative weak supersolution f to (1) in Q we have

P
(/ Iflpd(t,x,v)> < Cinff.
= Q+

Optimal range for p.

Q* Q+
sup f inf f

(x, V)T Q




Moser's 1971 method in kinetic theory

Sobolev inequality testing with ¥

\/

Moser iteration testing with 1 Kinetic trajectories
Y \/
LP—[%° estimates weak Ll-estimate for the logarithm

— =

Lemma of Bombieri and Giusti

Y

Y

Harnack inequality Holder continuity




Euclidean smoothing

V—m

f=7Ff(v)— f(m)? (
Rn

) g — /R A — )P el

r



Parabolic smoothing

Space

f=17(t,v)— f(t —sr,v —r*?m)e?(m)dm
]Rn
Spacetime

f=7Ff(t,v)— f(t — sr,v — r*?m)y?(s, m)d(s, m)

R1+n



Kinetic smoothing

Consider v(>™): R — R2" with m = (mg, m;) € R?", s # 0 defined as

(s;m)

ve o (r)

t+sr
= (£280) - (oo 1))



Kinetic smoothing

Consider v(>™): R — R2" with m = (mg, m;) € R?", s # 0 defined as

FEm(r; (8, x,v)) = XS”‘)E:; - (As(r) (22) + ((1) Slr) <t>>

Spacetime

TAONExv) = o [ ™ (65025, m)d(s,m)
Y JQ



Kinetic Sobolev embedding

Theorem (DMNZ 24):

Let f € L2(RY"; HY(R")) such that 8;f + v -V, f =V, - h
for some h € L?(R'*27, R™), then

11l om esany < € (V0 llaqgssany + 1l zqgasan) )

with K =1+ 2 and C = C(n) > 0.



Kinetic Sobolev embedding

Theorem (DMNZ 24):

Let f € L2(RY"; HY(R")) such that 8;f + v -V, f =V, - h
for some h € L?(R1*27; R"), then

11l om esany < € (V0 llaqgssany + 1l zqgasan) )

with & =14 2 and C = C(n) > 0.

Local versions. No fundamental solution, only Young-type inequality.



Kinetic Nash inequality

Theorem (DMNZ 24):

Let f € L2(RY"; HY(R")) N LY(R¥*+2") such that we have
O¢f + v -Vif =V, - hfor some h € [>(R'+2";R"), then

+
113 By < Cof IV FIBaqaseany + Al agrvan 1115 e

for some C = C(n) > 0.



Kinetic Nash inequality

Theorem (DMNZ 24):

Let f € L2(RY"; HY(R")) N LY(R¥*+2") such that we have
O¢f + v -Vif =V, - hfor some h € [>(R'+2";R"), then

+
I3y < IV A agvany + 1A Ragreany 111 ey
for some C = C(n) > 0.

Consequence of Sobolev and interpolation.
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