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Parabolic diffusion problem

Let Q C RY open and T > 0. Consider weak solutions
u = u(t,x) € C([0, T]; L>(R)) N L2((0, T); H(Q)) to

Oiu=V-(AVu) in(0,T)xQ



Parabolic diffusion problem with rough coefficients

Let Q C RY open and T > 0. Consider weak solutions
u = u(t,x) € C([0, T]; L>(R)) N L2((0, T); H(Q)) to

Oiu=V-(AVu) in(0,T)xQ

where A= A(t,x): (0, T) x Q — R"™" is measurable,
symmetric, bounded and

MEP < (A(t, )€, €) < Mgl
for all ¢ € R" ace. (t,x) € (0, T) x Q. Set p= 3 +A.
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Parabolic geometry

Consider A = Id.
Oru = Au

Scaling: A — (\2t, \x)
if u solves (1) then so does w(t, x) = u(A\?t, Ax)

Translation: (to,xp) — (t — to,x — Xp)
if u solves (1) then so does w(t,x) = u(t — to,x — Xp)



[2 — [ estimate

Theorem (Nash 58, Moser 64):

Let 6 €(0,1),0<r<R<1, t€(0,T) xo €Q There exists
¢ =c(d,d, ) > 0 such that any pos. subsolution to (1) satisfies

sup  u? — )d+2 // u?dxdt
Qr (to,x0) r
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Qg (t0, x0)
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The Harnack inequality

Theorem (Moser 64):

Let 6 € (0,1), 7 > 0. There exists C = C(d,d,7) > 0 such that
for any nonnegative weak solution u of (1) in @ we have

supu < CHinf u.
Q- Q+
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The Harnack inequality

Theorem (Moser 64):

Let 6 € (0,1), 7 > 0. There exists C = C(d,d,7) > 0 such that
for any nonnegative weak solution u of (1) in @ we have

supu < CHinf u.
Q_ Q+

- scaling and translation invariant

- implies Holder continuity in (¢, x) of u

- implies heat kernel bounds

- dependency of the constant on = % + A is optimal



Brief history

- Harnack proves inequality for harmonic functions Au = 0 in 1887
- Hadamard & Pini independently prove a Harnack inequality
for the heat equation 0;u = Au in 1957
- De Giorgi solves Hilbert's 19th problem in 1957
key step: a priori Holder continuity for —V - (AVu) =0
- 1958 Nash treats the elliptic & parabolic eq. d;u =V - (AVu)
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Proof of the Harnack inequality a la Moser 1971

3 Ingredients:
A: LP — [*° estimate for small p # 0
B: weak L!-estimate for the logarithm of supersolutions

C: Lemma of Bombieri and Giusti



LP — [°° estimate

Theorem (Moser 64 & 71):

Let 0 € (0,1),0<r<R<1, t€(0,T) xo €Q There exists
¢ = ¢(d, ) > 0 such that any pos. solution to (1) satisfies

C
sup Up S m // Upd(t,X) P € (—%,0>

Qr (to,x0)
' Qx (t0,x0)
P < 1
sup u” = // pE(O,—).
d 2
Qr(to,x0) — )t #
Qr(t0,x0)
Qr (to, x0) Qr(t, x0)
Q; (to, x0) Qr(to, xo0)
LP [ LP o [

1 L



LP — [°° estimate

Theorem (Moser 64 & 71):

Let 0 € (0,1),0<r<R<1, t€(0,T) xo €Q There exists
¢ = c(d,d) > 0 such that any pos. solution to (1) satisfies

1
sup upg —rd+2 // uPd(t, x) p€</1,0>

Qr (to,x0)

Q (to,x0)
1
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Idea of the proof:

- test the equation (1) with u”¢? 3 < —1

- employ the Sobolev |nequa||ty to obtam
a gain of integrability on smaller cylinder

- iterate this inequality (Moser iteration)



LP — [°° estimate

Theorem (Moser 64 & 71):

Let 0 € (0,1),0<r<R<1, t€(0,T) xo €Q There exists
¢ = ¢(d, ) > 0 such that any pos. solution to (1) satisfies

C 1
sup Up § m // Upd(t,X) P S <—;,O>

Qr (to,x0)
QE(to,Xo)
1
sup up§ d uPd(t, x) pe(0,— ).
+2 1
Qr(to,x0) o M
QR(fo X0)

Idea of the proof:
- test the equation (1) with u’¢? B> —1and B #0
- employ the Sobolev |nequa||ty to obtam
a gain of integrability on smaller cylinder
- iterate this inequality (Moser iteration)



Weak L'-estimate for log u

Theorem (Moser 64 & 71):

Let 6,7 € (0,1) and €,7 > 0. Then for any supersolution u > ¢ > 0
to (1) there exists constants ¢ = ¢(u) and C = C(d,d,n,7) > 0 such t

s|{(t,x) € K_: logu(t,x) — c(u) > s}| < Cur?|B|, s>0
s|{(t,x) € Ki: c(u) — logu(t,x) > s} < Cur?|B|, s>0
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Weak L'-estimate for log u

Theorem (Moser 64 & 71):

Let 6,7 € (0,1) and €,7 > 0. Then for any supersolution u > ¢ > 0
to (1) there exists constants ¢ = ¢(u) and C = C(d,d,n,7) > 0 such t

s|{(t,x) € K_: logu(t,x) — c(u) > s}| < Cur?|B|, s>0
s|{(t,x) € Ki: c(u) — logu(t,x) > s} < Cur?|B|, s>0

Idea of the proof:

- test the equation with u~1¢?
- employ the spatial Poincaré inequality to obtain
a differential inequality for

t > W(t) Z/Blog u(t, y)p*(y)dy

- several clever estimations yield the statement



Lemma of Bombieri and Giusti

Lemma (Moser 71, Bombieri and Giusti 72):

Let (X, v) be a finite measure space, U, C X, 0 < o < 1 measurable
with U,y C Uy if o' < o. Let G, >0,6€(0,1), i>1,v>0.
Suppose 0 < f: U; — R satisfies the following two conditions:

-forall0<d<r<R<1land0< p<1/fi we have

G /
supfP< ——— — fPdv
= (R=ryw(Uy)

U
- su({log f > s}) < Gofi v(Uy) for all s <0,

Then
supf < CF
Us

where C = C(Gy, (2,0, 7).



Proof of the Harnack a la Moser 1971

Goal:

supu < CHinf u.
Q_ Q+

Qs




Proof of the Harnack inequality a la Moser 1971

Consider first uexp(—c(u)) with c(u) as in weak L!-estimate.
Then the A,B and C combined give

supu < e exp (Cp)
Q-




Proof of the Harnack inequality a la Moser 1971

Consider now u~! exp(c(u)) with c(u) as in weak L!-estimate.
Then the A,B and C combined give

e(t) < exp (Cp)infu
Q+




Proof of the Harnack inequality a la Moser 1971

(") < exp (Cp) icr)n‘ u
+

supu < e exp (Cp)
Q




Proof of the Harnack inequality a la Moser 1971

e) < exp (Cp)

infu
Q+

supu < e exp (Cp)
Q

= Harnack inequality

Q-

Qs
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the method is much easier and less technical
- very robust
- allows to obtain the optimal dependency of the constants on A, A

- one can also include source terms or lower order terms
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Comments

- in comparision to De Giorgis, Nash's or Moser's old proof
the method is much easier and less technical
- very robust
- allows to obtain the optimal dependency of the constants on A, A
- one can also include source terms or lower order terms
- can be applied in many other contexts
- a class of hypoelliptic equations (Lu 1992)
- discrete space problems (Delmotte 1999)
- fractional (in time) equations (Zacher 2013)
- non-local (in space) equations (Kassmann & Felsinger 2013)
- passive scalars with rough drifts (Albritton & Dong 2022)
- many more
Problem:
The weak L!-estimate heavily relies on a spatial Poincaré inequality.



Weak L'-estimate for log u

Theorem (Moser 64 & 71):

Let 6,7 € (0,1) and €,7 > 0. Then for any supersolution u > ¢ > 0
to (1) there exists constants ¢ = ¢(u) and C = C(d,d,n,7) > 0 such t

s|{(t,x) € K_: logu(t,x) — c(u) > s}| < Cur?|B|, s>0
s|{(t,x) € Ki: c(u) — logu(t,x) > s} < Cur?|B|, s>0
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Weak L!-estimate for log u modified (1) deu =V - (AVw)

Theorem (N. & Zacher 22):

Let 6,7 € (0,1) and €,7 > 0. Then for any supersolution u > ¢ > 0
to (1) there exists constants ¢ = ¢(u) and C = C(d,d,n,7) > 0 such t

s|{(t,x) € K_: logu(t,x) — c(u) > s}| < Cur?|B|, s>0
s|{(t,x) € Ki: c(u) — logu(t,x) > s} < Cur?|B|, s>0

'l
> t

T T T

to to+nrr?  tg+71r?



Proof of the Harnack inequality a la Moser 1971

Q-

Q




Proof of the Harnack inequality a la Moser 1971




Proof of the Harnack inequality a la Moser 1971 modified




Proof of the weak L!-estimate mod.
By scaling and translation to =0, r = 1. 7 =1 for simplicity.

s|{(t,x) € K_: logu(t,x) — c(u) > s}| < Cur?|B|, s>0

K_ K.

Bs

0 n—1u n N+t 1



Proof of the weak Ll-estimate mod.

Choose |
)= / llog ul(7, )2 (y)dy
B



Proof of the weak Ll-estimate mod.

Choose 1
_1 / llog u](n, y)¢?(y)dy
Co
B
Note that
77 L
s [{(t,x) € K_: log(u) — c(u) > s}| <

o\

/ [log u](t, x) — c(u))4+dxdt
B



Proof of the weak Ll-estimate mod.

Choose |
)= / llog ul(7, )2 (y)dy
B

Note that

n—t

s|{(£,x) € K_: log(u) — c(u) > s}| < / /([Iogu](t,x)C(u))+d(t,x)
0 B



Proof of the weak Ll-estimate mod.

Choose |
)= / llog ul(7, )2 (y)dy
B

Goal: estimate
—L

/ [log u](t, x) — c(u))4+dxdt
B

o\:

by a constant
L1-Poincaré inequality in space time without gradient?!



Proof of the weak Ll-estimate mod.

Choose |
)= / llog ul(7, )2 (y)dy
B

Goal: estimate
—L

/ [log u](t, x) — c(u))4+dxdt
B

o\:

by a constant
L1-Poincaré inequality in space time without gradient?!
If u is solution to (1), then g = log u is a super solution to

0:g =V -(AVg) + (AVg,Vg).



Proof using parabolic trajectories

For g = log u we have

g(t.x) — cu) = — / (g(t, %) — &(1,))e?(¥)dy

//—gv( )dr?(y)dy

What is a good choice for 7



Parabolic trajectories

e (t,x)
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Parabolic trajectories

o (t,x)

(n,y)
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B
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Proof using parabolic trajectories

For g = log u we have
g(tx) — c(u) = = [ (&(t.) — ny))Py)dy

¢ JB
1
:—C—t /B /O %g(v(r))dﬂf(y)dy

Parabolic trajectory: v(r) = (t + r?(n — t),x + r(y — x))



Proof using parabolic trajectories

For g = log u we have
g(t,x) — () = / (&(t.) — £(n.y))(y)dy

/ / 80y

// 0 — 1)rl0egl(1(r) + (v — x) - [V&l(1()) 2 (y)dydr

/ / (n— 1)V - (AV&)(1(r) — 2(n — t)r[(AVg, V&)l (+(r))
~(y = %) [V&l(2(r) ) ¢*(y)dydr,

Parabolic trajectory: v(r) = (t + r®(n — t),x + r(y — x))
Idea: use quadratic gradient term to absorb all gradients
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Kinetic equations

Here: x,v € R", t € [0, T], u = u(t, x, v) particle density
owu+v-Veu=V,- (At x,v)V,u)
important prototype in kinetic theory.
- Harnack inequality by Golse, Imbert, Mouhot & Vasseur 2019
based on ideas of De Giorgi
- important to study the existence of global solutions

to the Landau equation

Can Moser's method be applied in the kinetic setting?



Kinetic Poincaré inequality

Theorem (Guerand & Mouhot 22, N. & Zacher 22):

Let u > 0 be a subsolution to (1) in @. Then

H(u - <UQ02>Q1_)+ ) < C HVVUHLI(C))

LY@

with (2 supported in Q; .

..b’.Qf Q1

. V)T ..... B




Advertisement

Kinetic maximal LP-regularity

- optimal regularity estimates for kinetic equations
- framework to study wellposedness of quasilinear kinetic equations

[d L. N., R.Zacher, Kinetic maximal [?-regularity for the (fractional)
Kolmogorv equation. Journal of Evolution Equations 21 (2021).

[4 L. N., R. Zacher, Kinetic maximal LP-regularity with temporal
weights and application to quasilinear kinetic diffusion equations.
Journal of Differential Equations 307 (2022).

[4 L. N., Kinetic maximal L (LP)-regularity for the fractional
Kolmogorov equation with variable density. Nonlinear Analysis
(2022).
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