

Steady bubbles and drops in inviscid fluids

Lukas Niebel University of Münster

joint work with David Meyer, ICMAT Madrid Christian Seis, University of Münster

Seminar of the AG Nichtlineare Partielle Differentialgleichungen KIT Karlsruhe, 21st May 2025

- 1. Experiments (videos, links on the last slide)
- 2. Two-phase Euler equations with surface tension
- 3. Travelling wave solutions and an overdetermined elliptic free boundary value problem
- 4. Close-to-spherical solutions (theorem, remarks, and proof)

Euler equations

Velocity field of the fluid U = U(t, x): $\mathbb{R} \times \mathbb{R}^3 \to \mathbb{R}^3$ solution to

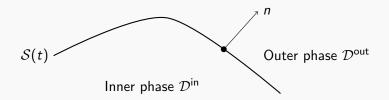
$$\partial_t U + (U \cdot \nabla)U + \nabla P = 0$$
 in $\mathbb{R} \times \mathbb{R}^3$
 $\nabla \cdot U = 0$ in \mathbb{R}^3

where $P \colon \mathbb{R} \times \mathbb{R}^3 \to \mathbb{R}$ is the pressure.

Two-phase Euler equations

Velocity field of the fluid $U \colon \mathbb{R} \times \mathbb{R}^3 \to \mathbb{R}^3$ solution to

$$\rho(\partial_t U + (U \cdot \nabla)U) + \nabla P = 0 \qquad \text{in } \mathbb{R} \times \mathbb{R}^3$$
$$\nabla \cdot U = 0 \qquad \text{in } \mathbb{R} \times \mathbb{R}^3$$
$$\llbracket U \cdot n \rrbracket = 0 \qquad \text{on } \mathcal{S}(t)$$



Two-phase Euler equations

Velocity field of the fluid $U \colon \mathbb{R} \times \mathbb{R}^3 \to \mathbb{R}^3$ solution to

$$\begin{split} \rho(\partial_t U + (U \cdot \nabla)U) + \nabla P &= 0 \qquad \text{ in } \mathbb{R} \times \mathbb{R}^3 \\ \nabla \cdot U &= 0 \qquad \text{ in } \mathbb{R} \times \mathbb{R}^3 \\ \llbracket U \cdot n \rrbracket &= 0 \qquad \text{ on } \mathcal{S}(t) \end{split}$$

where

- $P \colon \mathbb{R} imes \mathbb{R}^3 o \mathbb{R}$ is the pressure
- S(t) is the interface separating the inner $\mathcal{D}^{in}(t)$ and outer $\mathcal{D}^{out}(t)$ fluid domain

-
$$\rho(t) = \rho^{\text{in}} \mathbb{1}_{\mathcal{D}^{\text{in}}(t)} + \rho^{\text{out}} \mathbb{1}_{\mathcal{D}^{\text{out}}(t)}$$
 for $\rho^{\text{in}}, \rho^{\text{out}} \ge 0$, is the density function

- $[\![f]\!] = f^{\text{out}} - f^{\text{in}}$, the jump of a quantity f across the interface.

Two-phase Euler equations

Velocity field of the fluid $U \colon \mathbb{R} \times \mathbb{R}^3 \to \mathbb{R}^3$ solution to

$$\begin{split} \rho(\partial_t U + (U \cdot \nabla)U) + \nabla P &= 0 \qquad \text{ in } \mathbb{R} \times \mathbb{R}^3 \\ \nabla \cdot U &= 0 \qquad \text{ in } \mathbb{R} \times \mathbb{R}^3 \\ \llbracket U \cdot n \rrbracket &= 0 \qquad \text{ on } \mathcal{S}(t) \end{split}$$

where

- $P \colon \mathbb{R} imes \mathbb{R}^3 o \mathbb{R}$ is the pressure
- S(t) is the interface separating the inner Dⁱⁿ(t) and outer D^{out}(t) fluid domain
 ρ(t) = ρⁱⁿ 1_{Dⁱⁿ(t)} + ρ^{out} 1_{D^{out}(t)} for ρⁱⁿ, ρ^{out} ≥ 0, is the density function.

Ill-posed due to Kelvin-Helmholtz instability!

Two-phase Euler equations with surface tension

Velocity field of the fluid $U \colon \mathbb{R} \times \mathbb{R}^3 \to \mathbb{R}^3$ solution to

$$\rho(\partial_t U + (U \cdot \nabla)U) + \nabla P = 0 \qquad \text{in } \mathbb{R} \times \mathbb{R}^3$$
$$\nabla \cdot U = 0 \qquad \text{in } \mathbb{R} \times \mathbb{R}^3$$
$$\llbracket P \rrbracket = \sigma H \qquad \text{on } \mathcal{S}(t)$$
$$\llbracket U \cdot n \rrbracket = 0 \qquad \text{on } \mathcal{S}(t)$$

where

- we take into consideration the Young-Laplace law
- *H* is the mean curvature (H = 2 for the unit ball)
- $\sigma > {\rm 0}$ is the surface tension

Two-phase Euler equations with surface tension

Velocity field of the fluid $U \colon \mathbb{R} \times \mathbb{R}^3 \to \mathbb{R}^3$ solution to

$$\rho(\partial_t U + (U \cdot \nabla)U) + \nabla P = 0 \qquad \text{in } \mathbb{R} \times \mathbb{R}^3$$
$$\nabla \cdot U = 0 \qquad \text{in } \mathbb{R} \times \mathbb{R}^3$$
$$\llbracket P \rrbracket = \sigma H \qquad \text{on } \mathcal{S}(t)$$
$$\llbracket U \cdot n \rrbracket = 0 \qquad \text{on } \mathcal{S}(t)$$

Literature:

- Lots of physics literature. Influential: Hou-Lowengrub-Shelly '97
- Locally well-posed: Iguchi-Tanaka-Tani '97, Ambrose '02, Schweizer '05, Ambrose-Masmoudi '2007, Cheng-Coutand-Shkoller '08, Coutand-Shkoller '08
- A priori regularity: Shatah-Zeng '08
- Finite-time singularities: Coutand-Shkoller '14, Castro-Córdoba-Fefferman-Gancedo-Gómez-Serrano '12

We make the ansatz

$$u(x) = U(t, x_1, x_2, x_3 + Vt) - Ve_3$$

$$p(x) = P(t, x_1, x_2, x_3 + Vt)$$

$$S(t) = S + tVe_3,$$

for some speed $V \ge 0$.

The time-independent u, p, S solve the steady two-phase Euler equations

$$\rho(u \cdot \nabla)u + \nabla p = 0 \qquad \text{in } \mathbb{R}^3 \setminus S,$$

$$\nabla \cdot u = 0 \qquad \text{in } \mathbb{R}^3,$$

$$\llbracket p \rrbracket = \sigma H \qquad \text{on } S,$$

$$u \cdot n = 0 \qquad \text{on } S.$$

with $\lim_{|x|\to\infty} u(x) = -Ve_3$.

Bernoulli equations (for steady flows) for the inner/outer phase are

$$\frac{\rho^{\mathrm{in}}}{2} |u^{\mathrm{in}}|^2 + \rho^{\mathrm{in}} = \mathrm{const},$$
$$\frac{\rho^{\mathrm{out}}}{2} |u^{\mathrm{out}}|^2 + \rho^{\mathrm{out}} = \mathrm{const}.$$

We rewrite the interfacial condition

$$\llbracket P \rrbracket = \sigma H$$
 on \mathcal{S}

Rewrite the interfacial condition as

$$\frac{1}{2} \llbracket \rho |u|^2 \rrbracket + \sigma H = \text{const on } \mathcal{S}.$$

We are interested in axisymmetric and swirl-free vector fields (u = u(r, z) and azimutal component $u_{\varphi} = 0)$.

We assume uniform vorticity distribution in the inner phase, i.e.

$$\operatorname{curl} u^{\mathsf{in}} = \omega_{\mathsf{a}} = \frac{15}{2} \operatorname{a} \begin{pmatrix} -x_2 \\ x_1 \\ 0 \end{pmatrix} = \frac{15}{2} \operatorname{a} \operatorname{re}_{\varphi}$$

for $a \in \mathbb{R}$.

The fluid in the outer domain is assumed to be irrotational $\operatorname{curl} u^{\operatorname{out}} = 0$.

The volume is $|\mathcal{S}| = \frac{4}{3}\pi R^3$.

We work with the vector stream function $\psi \colon \mathbb{R}^3 \to \mathbb{R}^3$ with

$$u = \operatorname{curl} \psi - Ve_3.$$

The tangential flow and the axisymmetry no-swirl condition yields

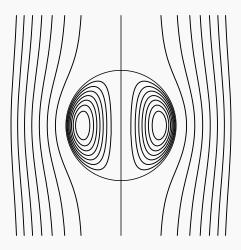
$$\psi = \frac{V}{2} r e_{\varphi}$$
 on \mathcal{S} .

The identity $\operatorname{curl}\operatorname{curl}=\nabla\nabla\cdot-\Delta$ implies

$$-\Delta \psi = \omega_a \mathbb{1}_{\mathcal{D}^{\text{in}}} \text{ in } \mathbb{R}^3 \setminus \mathcal{S}.$$

The jump condition becomes

$$\frac{1}{2} \left[\left[\rho \left| \operatorname{curl} \psi - V e_3 \right|^2 \right] + \sigma H = \operatorname{const} \, \operatorname{on} \, \mathcal{S}.$$



Streamlines of ψ_S in axisymmetric coordinates

A first solution is given by ${\mathcal S}$ the sphere of radius ${\mathcal R}$

$$\psi_{S}(x) = \begin{pmatrix} -x_{2} \\ x_{1} \\ 0 \end{pmatrix} \cdot \begin{cases} \frac{3a}{4} \left(R^{2} - |x|^{2} \right) + \frac{V_{S}}{2} & \text{for } |x| \leq R \\ \frac{V_{S}}{2} \frac{R^{3}}{|x|^{3}} & \text{for } |x| > R, \end{cases}$$

where $V_{\mathcal{S}} = |a| R^2 \sqrt{rac{
ho^{in}}{
ho^{out}}}$ is determined such that

$$\frac{1}{2} \left[\left[\rho |\operatorname{curl} \psi_{5} - V_{5} e_{3}|^{2} \right] \right] = \frac{9}{8R^{2}} \left(a^{2} R^{4} \rho^{\mathsf{in}} - \rho^{\mathsf{out}} V_{5}^{2} \right) \left(x_{1}^{2} + x_{2}^{2} \right)$$

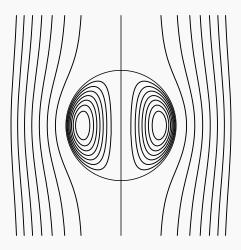
is constant on the sphere of radius R and thus

$$\frac{1}{2} \left[\left[\rho |\operatorname{curl} \psi_{\mathcal{S}} - V_{\mathcal{S}} e_{3}|^{2} \right] \right] + \sigma H = 2\sigma R = \operatorname{const.}$$

A first solution is given by ${\mathcal S}$ the sphere of radius ${\mathcal R}$

$$\psi_{5}(x) = \begin{pmatrix} -x_{2} \\ x_{1} \\ 0 \end{pmatrix} \cdot \begin{cases} \frac{3a}{4} \left(R^{2} - |x|^{2}\right) + \frac{V_{S}}{2} & \text{for } |x| \leq R \\ \frac{V_{S}}{2} \frac{R^{3}}{|x|^{3}} & \text{for } |x| > R, \end{cases}$$
with $V_{S} = |a| R^{2} \sqrt{\frac{\rho^{\text{in}}}{\rho^{\text{out}}}}.$

Vortex sheet, i.e. nonzero jump of $U_S \cdot \tau$ at S, whenever $V_S \neq aR^2$.



Streamlines of ψ_S in axisymmetric coordinates

The overdetermined free boundary value problem

Given parameters $\rho^{\rm in},\rho^{\rm out},a,R,V$ find surface ${\cal S}$ and stream function ψ solution to

$$\begin{cases} -\Delta \psi = \frac{15}{2} \, s \sin \theta e_{\varphi} \mathbb{1}_{\mathcal{D}^{\text{in}}} & \text{in } \mathbb{R}^3 \setminus \mathcal{S} \\ \psi = \frac{V}{2} s \sin \theta e_{\varphi} & \text{on } \mathcal{S} \\ \frac{1}{2} \left[\left[\rho \left| \operatorname{curl} \psi - V e_3 \right|^2 \right] + \sigma H = \operatorname{const} & \text{on } \mathcal{S} \end{cases} \end{cases}$$

Spherical coordinates $(s, \theta, \varphi) \in [0, \infty) \times [0, \pi) \times [0, 2\pi)$.

The overdetermined free boundary value problem

Given parameters ρ^{in} , ρ^{out} , σ , a, R, V find a surface S and a stream function ψ solution to

$$\begin{cases} -\Delta \psi = \frac{15}{2} a s \sin \theta e_{\varphi} \mathbb{1}_{\mathcal{D}^{\text{in}}} & \text{in } \mathbb{R}^3 \setminus S \\ \psi = \frac{V}{2} s \sin \theta e_{\varphi} & \text{on } S \\ \frac{1}{2} \left[\left[\rho \left| \operatorname{curl} \psi - V e_3 \right|^2 \right] + \sigma H = \operatorname{const} & \text{on } S \end{cases} \end{cases}$$

Weber number: We = $\frac{\rho^{\text{out } V^2 R}}{\sigma}$ Vortex Weber number: $\gamma = \frac{\rho^{\text{in } a^2 R^5}}{\sigma}$

The overdetermined free boundary value problem Rescale to R = 1 and decompose

$$\psi = \left(a\psi^{\text{in}} + \frac{V}{2}s\sin\theta \,e_{\varphi}\right)\mathbb{1}_{\mathcal{D}^{\text{in}}} + V\psi^{\text{out}}\mathbb{1}_{\mathcal{D}^{\text{out}}},$$

with $\psi^{\mathrm{in}}\colon \mathcal{D}^{\mathrm{in}}\to \mathbb{R}^3$ solution to

$$\begin{cases} -\Delta \psi^{\rm in} = \frac{15}{2} s \sin \theta \, e_{\varphi} & \text{ in } \mathcal{D}^{\rm in}, \\ \psi^{\rm in} = 0 & \text{ on } \mathcal{S}, \end{cases}$$

and $\psi^{\rm out}\colon \mathcal{D}^{\rm out}\to \mathbb{R}^3$ vanishing at infinity and solving

$$\begin{cases} -\Delta \psi^{\text{out}} = 0 & \text{ in } \mathcal{D}^{\text{out}} \\ \psi^{\text{out}} = \frac{1}{2} s \sin \theta \, e_{\varphi} & \text{ on } \mathcal{S}. \end{cases}$$

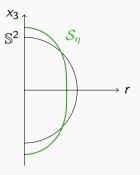
Jump condition: $\frac{\gamma}{2} |\operatorname{curl} \psi^{\operatorname{in}}|^2 - \frac{\operatorname{We}}{2} |\operatorname{curl} \psi^{\operatorname{out}} - e_3|^2 + H = \operatorname{const} \operatorname{on} \mathcal{S}.$

Perturbation of the spherical solution

For a shape function $\eta \in \mathsf{H}^{\beta}(\mathbb{S}^2)$ we consider

$$\mathcal{S}_{\eta} = \left\{ (1 + \eta(x)) x : x \in \mathbb{S}^2 \right\}.$$

In axisymmetric coordinates:



Perturbation of the spherical solution

For a shape function $\eta \in \mathsf{H}^{\beta}(\mathbb{S}^2)$ we consider

$$\mathcal{S}_\eta = ig\{(1+\eta(x))x: x\in\mathbb{S}^2ig\},$$

with $\mathcal{D}_{\eta}^{\text{in}}$ and $\mathcal{D}_{\eta}^{\text{out}}$ well-defined if $\eta > -1$.

We impose

- axi-symmetry $\eta = \eta(\theta)$, and

- reflection invariance across the reference plane, $\eta(\frac{\pi}{2} - \theta) = \eta(\frac{\pi}{2} + \theta)$ and write $H^{\beta}_{sym}(\mathbb{S}^2)$ for that subspace.

Set $\mathcal{M}^{\beta} = \{\eta \in \mathsf{H}^{\beta}_{\operatorname{sym}}(\mathbb{S}^2) : \left| \mathcal{D}^{\mathsf{in}}_{\eta} \right| = \frac{4}{3}\pi \text{ and } \|\eta\|_{\mathsf{H}^{\beta}} \leq c_0\}$ for $c_0 > 0$ small.

Perturbative ansatz

We introduce the functional $\mathcal{F} \colon \mathbb{R} \times \mathbb{R} \times \mathcal{M}^{\alpha+2} \to \mathsf{H}^{\alpha}_{\mathrm{sym}}(\mathbb{S}^2)/_{\mathrm{const}}$ as

$$\mathcal{F}(\gamma, \mathrm{We}, \eta) = \frac{\gamma}{2} \left| (\operatorname{curl} \psi_{\eta}^{\mathsf{in}}) \circ \chi_{\eta} \right|^{2} - \frac{\mathrm{We}}{2} \left| (\operatorname{curl} \psi_{\eta}^{\mathsf{out}}) \circ \chi_{\eta} - \boldsymbol{e}_{3} \right|^{2} + H_{\eta} \circ \chi_{\eta}$$

where $\chi_{\eta} = (1 + \eta(x))x$.

Goal: find We, γ and η such that

$$\mathcal{F}(\gamma, \mathrm{We}, \eta) = \mathrm{const.}$$

Spherical solution:

$$\mathcal{F}(\gamma, \gamma, 0) = 2 = \text{const.}$$

(1) $\mathcal{F}(\gamma, \mathrm{We}, \eta) = \mathrm{const}$

Theorem (MNS '25):

Let $\beta > 2$. There exists $c_0 = c_0(\beta) > 0$ and an increasing sequence $\Gamma = (\gamma_k)_{k \in \mathbb{N}}$ of positive numbers diverging to infinity with: (A) For any $\gamma \in [0, \infty) \setminus \Gamma$ and any We close to but different from γ , there exists a unique nontrivial (smooth) solution $\eta = \eta(\gamma, \text{We}) \in \mathcal{M}^{\beta}$ to the jump equation (1).

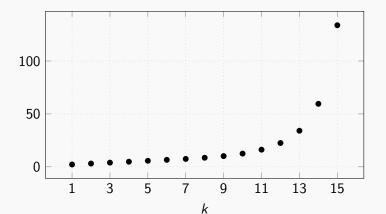
If $\gamma = \varepsilon \delta^{\text{in}}$ and $\text{We} = \varepsilon \delta^{\text{out}}$ for two nonnegative constants $\delta^{\text{in}} \neq \delta^{\text{out}}$ and a small parameter ε , we have the asymptotic expansion

$$\eta_{arepsilon} = arepsilon rac{3}{32} (\delta^{\mathsf{in}} - \delta^{\mathsf{out}}) \left(3\cos^2 heta - 1
ight) + o(arepsilon)$$
 as $arepsilon o 0$.

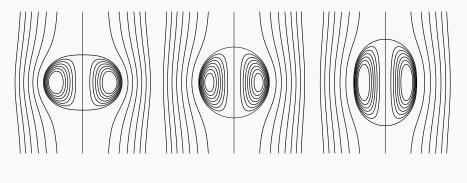
(B) For any $k \in \mathbb{N}$, there exists a unique local curve $s \mapsto \gamma(s)$ passing through γ_k and there are associated nontrivial (smooth) shape functions $\eta(s) \in \mathcal{M}^{\beta}$ such that the equation (1) is solved at $(\gamma(s), \gamma(s), \eta(s))$.

Remarks on the Theorem

k	1	2	3	4	5	6
γ_k	2.20516	3.07529	3.94492	4.81679	5.69137	6.56836



Remarks on the Theorem (A)

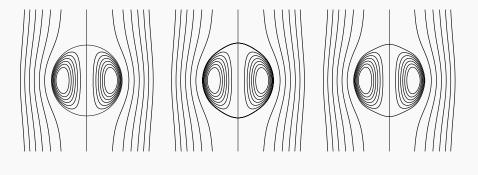


 $We > \gamma$

 $We = \gamma$ W

 $We < \gamma$

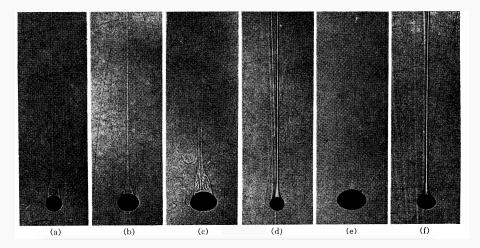
Remarks on the Theorem (B)



 $We = \gamma$

 γ_2

Remarks on the Theorem



Experimental observations

Droplet Motion in Purified Systems, S. Winnikow and B. T. Chao (1966)

Corollary (MNS '25):

There exist values of γ close to the bifurcation set Γ for which non-spherical steady vortex solutions with $We = \gamma$ exist. In particular, for these values, the spherical vortex is non-unique.

In the one fluid setting $(\rho^{in} = \rho^{out})$ without surface tension $(\sigma = 0)$ the spherical solution with Hill's vortex core is unique up to translations (Amick-Fraenkel '86).

Remarks on the Theorem

Physics literature:

- Moore '58 derives the formal asymptotics of the shape for small Weber numbers neglecting the internal motion ($\rho^{in} = 0$).
- Harper '72 explains that the inner circulation can be approximated by Hill's vortex core.
- Pozrikidis '89 provides numerical evidence of the bifurcation branch and finds approximations for γ_1, γ_2 .

Remarks on the Theorem

Mathematical literature:

- Crowdy-Wegmann '00 investigate two-dimensional vortex sheets
- Meyer-Seis '24 construct bubble rings
- Baldi-La Manna-La Scala '25 construct rotating solutions of close-to-spherical shape
- Murgante-Roulley-Scrobogna '25 investigate the dynamics of of close-to-spherical vortex sheets

(1) $\mathcal{F}(\gamma, \mathrm{We}, \eta) = \mathrm{const}$

Theorem (MNS '25):

Let $\beta > 2$. There exists $c_0 = c_0(\beta) > 0$ and an increasing sequence $\Gamma = (\gamma_k)_{k \in \mathbb{N}}$ of positive numbers diverging to infinity with: (A) For any $\gamma \in [0, \infty) \setminus \Gamma$ and any We close to but different from γ , there exists a unique nontrivial (smooth) solution $\eta = \eta(\gamma, \text{We}) \in \mathcal{M}^{\beta}$ to the jump equation (1).

If $\gamma = \varepsilon \delta^{\text{in}}$ and $\text{We} = \varepsilon \delta^{\text{out}}$ for two nonnegative constants $\delta^{\text{in}} \neq \delta^{\text{out}}$ and a small parameter ε , we have the asymptotic expansion

$$\eta_{arepsilon} = arepsilon rac{3}{32} (\delta^{\mathsf{in}} - \delta^{\mathsf{out}}) \left(3\cos^2 heta - 1
ight) + o(arepsilon)$$
 as $arepsilon o 0$.

(B) For any $k \in \mathbb{N}$, there exists a unique local curve $s \mapsto \gamma(s)$ passing through γ_k and there are associated nontrivial (smooth) shape functions $\eta(s) \in \mathcal{M}^{\beta}$ such that the equation (1) is solved at $(\gamma(s), \gamma(s), \eta(s))$.

Idea of the proof

Recall

$$\mathcal{M}^{\alpha+2} = \left\{ \eta \in \mathsf{H}^{\alpha+2}_{\operatorname{sym}}(\mathbb{S}^2) : \left| \mathcal{D}^{\mathsf{in}}_{\eta} \right| = \frac{4}{3}\pi \text{ and } \|\eta\|_{\mathsf{H}^{\alpha+2}} \leq c_0 \right\}$$

 c_0 small; $\alpha > 0$ (\rightsquigarrow Sobolev embedding; algebra property),

$$\mathcal{F} \colon \mathbb{R} \times \mathbb{R} \times \mathcal{M}^{\alpha+2} \to \mathsf{H}^{\alpha}_{\mathrm{sym}}(\mathbb{S}^2)/_{\mathrm{const}},$$
$$\mathcal{F}(\gamma, \mathrm{We}, \eta) = \frac{\gamma}{2} \left| (\operatorname{curl} \psi_{\eta}^{\mathsf{in}}) \circ \chi_{\eta} \right|^2 - \frac{\mathrm{We}}{2} \left| (\operatorname{curl} \psi_{\eta}^{\mathsf{out}}) \circ \chi_{\eta} - \mathbf{e}_3 \right|^2 + \mathcal{H}_{\eta} \circ \chi_{\eta}$$
$$\mathcal{F}(\gamma, \gamma, \mathbf{0}) = \operatorname{const} \text{ for all } \gamma > \mathbf{0}.$$

Idea of the proof

Observe that \mathcal{F} is Fréchet differentiable.

We calculate

$$\mathbb{D}_{\eta}\mathcal{F}(\gamma,\gamma,\eta)|_{\eta=0}: T_{0}\mathcal{M}^{\alpha+2} \to \mathsf{H}^{\alpha}_{\mathrm{sym}}(\mathbb{S}^{2})/_{\mathrm{const}},$$

which turns out to be invertible precisely if $\gamma \notin \Gamma = (\gamma_k)_{k \in \mathbb{N}}$.

- If γ ∉ Γ we can employ the implicit function theorem to deduce part (A).
- At γ ∈ Γ we perform a bifurcation analysis by employing the Crandall-Rabinowitz theorem to prove part (B).

The curvature term

The curvature of a graph over the sphere can be written as

$$H_{\eta} \circ \chi_{\eta} = rac{1}{1+\eta} \left(2rac{1+\eta}{\sqrt{g_{\eta}}} - rac{\Delta_{\mathbb{S}^2}\eta}{\sqrt{g_{\eta}}} -
abla_{\mathbb{S}^2}rac{1}{\sqrt{g_{\eta}}} \cdot
abla_{\mathbb{S}^2}\eta
ight)$$

where $g_{\eta} = (1+\eta)^2 + |
abla_{\mathbb{S}^2}\eta|^2$.

We deduce

$$D_{\eta}H_{\eta}\circ\chi_{\eta}|_{\eta=0}=-(\Delta_{\mathbb{S}^{2}}+2\mathrm{Id}).$$

Recall that the spherical harmonics $\{Y_l^m : l \in \mathbb{N}, -l \le m \le l\}$ form an eigenbasis for this operator with eigenvalues (l+2)(l-1).

A first part of the proof

At $\gamma={\rm 0}$ the curvature term dominates

$$D_{\eta}\mathcal{F}(0,0,\eta)|_{\eta=0} = -(\Delta_{\mathbb{S}^{2}} + 2\mathrm{Id}): T_{0}\mathcal{M}^{\alpha+2} \to \mathsf{H}^{\alpha}_{\mathrm{sym}}(\mathbb{S}^{2})/_{\mathrm{const}}.$$

Moreover, $T_{0}\mathcal{M}^{\alpha+2} = \{\eta \in \mathsf{H}^{\alpha+2}_{\mathrm{sym}}(\mathbb{S}^{2}): \int_{\mathbb{S}^{2}} \eta \mathrm{d}\sigma = 0\}$ and

$$\mathsf{H}^{\beta}_{\mathrm{sym}}(\mathbb{S}^2) := \big\{ f \in \mathsf{H}^{\beta}(\mathbb{S}^2) : \langle f, Y_I^m \rangle = 0 \text{ if } I \text{ is odd or } m \neq 0 \big\}.$$

Hence, the operator is invertible and we can locally solve

$$\mathcal{F}\left(\varepsilon\delta^{\mathrm{in}},\varepsilon\delta^{\mathrm{out}},\eta_{\varepsilon}\right)=\mathrm{const},\ \varepsilon\in\left[0,\varepsilon_{0}\right)$$

for functions $(\eta_{\varepsilon})_{\varepsilon \in [0,\varepsilon_0)}$. Noting that

$$\left.\mathrm{D}_{\varepsilon}\mathcal{F}\left(\varepsilon\delta^{\mathrm{in}},\varepsilon\delta^{\mathrm{out}},0\right)\right|_{\varepsilon=0}=-\frac{3}{2}\sqrt{\frac{\pi}{5}}(\delta^{\mathrm{in}}-\delta^{\mathrm{out}})Y_{2}^{0}(\theta)$$

gives the first-order asymptotics.

The jump term

A longer calculation reveals that

$$\langle \mathrm{D}_{\eta}\mathcal{F}(\gamma,\gamma,\eta)|_{\eta=0},\delta\eta
angle = rac{9}{2}\gamma\sin heta\ e_{\varphi}\cdot(\mathrm{2Id}-\Lambda)(\sin heta\ \delta\eta\ e_{\varphi}) - (\Delta_{\mathbb{S}^2}+\mathrm{2Id})\,\delta\eta,$$

where Λ is the Dirichlet-to-Neumann map for the Laplacian on the unit ball in $\mathbb{R}^3.$

We write

$$\begin{split} [\mathcal{A}(\mu)](\delta\eta) &= \frac{2}{9\gamma} \langle \mathrm{D}_{\eta} \mathcal{F}(\gamma, \gamma, \eta)|_{\eta=0} \,, \delta\eta \rangle \\ &= \sin \theta \, e_{\varphi} \cdot (2\mathrm{Id} - \Lambda) (\sin \theta \, \delta\eta \, e_{\varphi}) - \mu (\Delta_{\mathbb{S}^2} + 2\mathrm{Id}) \delta\eta, \end{split}$$
for $\mu = \frac{2}{9\gamma}.$

Finding $\mu > 0$ such that ker $\mathcal{A}(\mu) \neq \{0\}$ is equivalent to the eigenvalue problem of the symmetric and compact operator

$$\mathcal{K} = (\Delta_{\mathbb{S}^2} + 2\mathrm{Id})^{-\frac{1}{2}} \sin \theta \, e_{\varphi} \cdot (2\mathrm{Id} - \Lambda) (\sin \theta \, \left((\Delta_{\mathbb{S}^2} + 2\mathrm{Id})^{-\frac{1}{2}} \delta \eta \right) \, e_{\varphi})$$

In representation via spherical harmonics

$$\delta\eta = \sum_{k=1}^{\infty} v_k Y_{2k}^0(\theta)$$

this is an infinite matrix operator in weighted sequence spaces

$$\mathrm{h}^lpha := \left\{ \mathbf{v} = (\mathbf{v}_k)_{k\in\mathbb{N}} \,:\, \|\mathbf{v}\|_{\mathrm{h}^lpha}^2 := \sum_{k=1}^\infty k^{2lpha} \mathbf{v}_k^2 < \infty
ight\}.$$

The operator ${\mathcal K}$ can be written as an infinite Jacobi matrix

$$\mathcal{K} = \begin{pmatrix} A_1 & B_1 & 0 & & & \\ B_1 & A_2 & B_2 & \ddots & & \\ 0 & B_2 & A_3 & B_3 & \ddots & \\ & \ddots & B_3 & A_4 & \ddots & \\ & & & \ddots & \ddots & \ddots & \end{pmatrix}$$

$$\begin{aligned} A_k &= -\frac{16k^3 + 4k^2 - 8k - 1}{64k^4 + 112k^3 + 44k^2 - 7k - 3} \sim -\frac{1}{4k} \\ B_k &= \frac{(k+1)(2k-1)(2k+1)}{(4k+3)\sqrt{64k^6 + 288k^5 + 420k^4 + 180k^3 - 69k^2 - 63k - 10}} \sim \frac{1}{8k} \end{aligned}$$

Recall:
$$\mu = \frac{2}{9\gamma}$$

Lemma:

Let $\alpha \geq 0$.

- a) For any $\mu \neq 0$, the operator $\mathcal{A}(\mu) : h^{\alpha+2} \to h^{\alpha}$ is a symmetric Fredholm operator of index 0.
- b) For $\mu > 0$, the nullspace $N(\mathcal{A}(\mu))$ of $\mathcal{A}(\mu)$ is at most one-dimensional and $N(\mathcal{A}(\mu)) \subset h^{\beta}$ for all $\beta \geq 0$. Moreover, $N(\mathcal{A}(\mu)) = \{0\}$ for $\mu \leq 0$.
- c) There exists a strictly decreasing sequence (μ_k)_{k∈ℕ} ⊂ ℝ⁺ with limit 0 such that A(μ_k) has a 1-dimensional nullspace and A(μ) is invertible if μ ∉ {μ_k : k ∈ ℕ} ∪ {0}.

d) We have $\mu_1 \leq \frac{\sqrt{2}}{21\sqrt{5}} + \frac{\sqrt{5}}{22\sqrt{13}} + \frac{127}{2079} \approx 0.119394.$ e) For $0 \neq v^k \in N(\mathcal{A}(\mu_k))$, we have the transversality condition

$$D_{\mu}\mathcal{A}(\mu)\big|_{\mu=\mu_{k}}v^{k}\notin R(\mathcal{A}(\mu_{k})).$$

Proof of the Theorem (A)

As before, we employ the implicit function theorem to

$$(\varepsilon, \eta) \mapsto \mathcal{F}(\gamma + \varepsilon \delta^{\mathrm{in}}, \gamma + \varepsilon \delta^{\mathrm{out}}, \eta)$$

whenever $\gamma \notin \Gamma$ and obtain $(\eta_{\varepsilon})_{|\varepsilon| < \varepsilon_0}$ such that

$$\mathcal{F}\left(\gamma + \varepsilon \delta^{\mathrm{in}}, \gamma + \varepsilon \delta^{\mathrm{out}}, \eta_{\varepsilon}\right) = \mathrm{const} \text{ for all } \varepsilon \in (-\varepsilon_0, \varepsilon_0).$$

Proof of the Theorem (B)

Theorem of Crandall and Rabinowitz '71:

Let M be a smooth Banach manifold and Y be a Banach space, $I \subset \mathbb{R}$ some open interval, and $\mathcal{G} \colon I \times M \to Y$ be continuous. Let $w_0 \in M$. If (1) $\mathcal{G}(\lambda, w_0) = 0$ for all $\lambda \in I$.

- (2) The Fréchet derivatives $D_{\lambda}G$, $D_{w}G$, $D_{\lambda w}^{2}G$ exist and are continuous.
- (3) There exists λ* ∈ I and w* ∈ T_{w0} M such that Y/R(D_wG(λ*, w₀)) and N(D_wG(λ*, w₀)) = span (w*) is 1-dimensional.
 (4) D²_{λw}G(λ, w)|_{(λ,w)=(λ*,w₀)}w* ∉ R(D_wG(λ*, w)|_{w=w₀}).

Then there exists a continuous local bifurcation curve $\{(\lambda(s), w(s))\}_{|s| < \varepsilon}$ with ε small such that $(\lambda(0), w(0)) = (\lambda^*, w_0)$ and

 $\{(\lambda, w) \in U : w \neq w_0, \mathcal{G}(\lambda, w) = 0\} = \{(\lambda(s), w(s)) : 0 < |s| < \varepsilon\}$

for some neighbourhood U of $(\lambda^*, w_0) \in I \times M$. Moreover,

$$w(s) = w_0 + sw^* + o(s)$$
 in $M, |s| < \varepsilon$.

Proof of the Theorem (B)

We apply the theorem of Crandall-Rabinowitz to

$$\mathcal{F}\colon (0,\infty) imes\mathcal{M}^{lpha+2} o \mathsf{H}^{lpha}_{\mathrm{sym}}(\mathbb{S}^2)/_{\mathrm{const}}, \quad (\gamma,\eta)\mapsto \mathcal{F}(\gamma,\gamma,\eta).$$

As

$$D_{\eta}\mathcal{F}(\gamma,\eta)|_{\eta=0} = \frac{9}{2}\gamma\mathcal{A}\left(\frac{2}{9\gamma}\right): \ T_{0}\mathcal{M}^{\alpha+2} \to \mathsf{H}^{\alpha}_{\mathrm{sym}}(\mathbb{S}^{2})/_{\mathrm{const}}$$

the assumptions (1)-(4) in the theorem of Crandall and Rabinowitz are a consequence of the previous lemma.

References

- D. Meyer, L. Niebel, and C. Seis. *Steady bubbles and drops in inviscid fluids*, arXiv:2503.05503 (2025).
- D. Meyer, and C. Seis. *Steady Ring-Shaped Vortex Sheets* arXiv:2409.08220 (2024).

lukasniebel.github.io

Video references

- 1. https://www.youtube.com/watch?v=GmiivJkfoLg
- 2. https://www.youtube.com/shorts/XVIxZiMfelw
- 3. https://www.youtube.com/watch?v=NjB7LXSQoQc
- 4. https://www.youtube.com/shorts/StysjXb9isQ
- 5. https://www.youtube.com/shorts/GDi09slsOec