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1. Experiments (videos, links on the last slide)

2. Two-phase Euler equations with surface tension

3. Travelling wave solutions and an overdetermined elliptic free

boundary value problem

4. Close-to-spherical solutions (theorem, remarks, and proof)



Euler equations

Velocity field of the fluid U = U(t, x) : R× R3 → R3 solution to

∂tU + (U · ∇)U +∇P = 0 in R× R3

∇ · U = 0 in R3

where P : R× R3 → R is the pressure.



Two-phase Euler equations

Velocity field of the fluid U : R× R3 → R3 solution to

ρ(∂tU + (U · ∇)U) +∇P = 0 in R× R3

∇ · U = 0 in R× R3

JU · nK = 0 on S(t)

n

S(t) Outer phase Dout

Inner phase Din



Two-phase Euler equations

Velocity field of the fluid U : R× R3 → R3 solution to

ρ(∂tU + (U · ∇)U) +∇P = 0 in R× R3

∇ · U = 0 in R× R3

JU · nK = 0 on S(t)

where

- P : R× R3 → R is the pressure

- S(t) is the interface separating the inner Din(t) and

outer Dout(t) fluid domain

- ρ(t) = ρin1Din(t) + ρout1Dout(t) for ρ
in, ρout ≥ 0, is the density function

- Jf K = f out − f in, the jump of a quantity f across the interface.



Two-phase Euler equations

Velocity field of the fluid U : R× R3 → R3 solution to

ρ(∂tU + (U · ∇)U) +∇P = 0 in R× R3

∇ · U = 0 in R× R3

JU · nK = 0 on S(t)

where

- P : R× R3 → R is the pressure

- S(t) is the interface separating the inner Din(t) and

outer Dout(t) fluid domain

- ρ(t) = ρin1Din(t) + ρout1Dout(t) for ρ
in, ρout ≥ 0, is the density function.

Ill-posed due to Kelvin-Helmholtz instability!



Two-phase Euler equations with surface tension

Velocity field of the fluid U : R× R3 → R3 solution to

ρ(∂tU + (U · ∇)U) +∇P = 0 in R× R3

∇ · U = 0 in R× R3

JPK = σH on S(t)
JU · nK = 0 on S(t)

where

- we take into consideration the Young-Laplace law

- H is the mean curvature (H = 2 for the unit ball)

- σ > 0 is the surface tension



Two-phase Euler equations with surface tension

Velocity field of the fluid U : R× R3 → R3 solution to

ρ(∂tU + (U · ∇)U) +∇P = 0 in R× R3

∇ · U = 0 in R× R3

JPK = σH on S(t)
JU · nK = 0 on S(t)

Literature:

- Lots of physics literature. Influential: Hou-Lowengrub-Shelly ’97

- Locally well-posed: Iguchi-Tanaka-Tani ’97, Ambrose ’02, Schweizer ’05,

Ambrose-Masmoudi ’2007, Cheng-Coutand-Shkoller ’08,

Coutand-Shkoller ’08

- A priori regularity: Shatah-Zeng ’08

- Finite-time singularities: Coutand-Shkoller ’14,

Castro-Córdoba-Fefferman-Gancedo-Gómez-Serrano ’12



Traveling wave solutions

We make the ansatz

u(x) = U(t, x1, x2, x3 + Vt)− Ve3

p(x) = P(t, x1, x2, x3 + Vt)

S(t) = S + tVe3,

for some speed V ≥ 0.



Traveling wave solutions

The time-independent u, p,S solve the steady two-phase Euler equations

ρ (u · ∇)u +∇p = 0 in R3\S,
∇ · u = 0 in R3,

JpK = σH on S,
u · n = 0 on S.

with lim
|x |→∞

u(x) = −Ve3.



Traveling wave solutions

Bernoulli equations (for steady flows) for the inner/outer phase are

ρin

2

∣∣uin∣∣2 + pin = const,

ρout

2

∣∣uout∣∣2 + pout = const.

We rewrite the interfacial condition

JPK = σH on S

Rewrite the interfacial condition as

1

2

q
ρ|u|2

y
+ σH = const on S.



Traveling wave solutions

We are interested in axisymmetric and swirl-free vector fields

(u = u(r , z) and azimutal component uφ = 0).

We assume uniform vorticity distribution in the inner phase, i.e.

curl uin = ωa =
15

2
a

−x2
x1
0

 =
15

2
a reφ

for a ∈ R.

The fluid in the outer domain is assumed to be irrotational curl uout = 0.

The volume is |S| = 4

3
πR3.



Traveling wave solutions

We work with the vector stream function ψ : R3 → R3 with

u = curlψ − Ve3.

The tangential flow and the axisymmetry no-swirl condition yields

ψ =
V

2
reφ on S.

The identity curl curl = ∇∇ · −∆ implies

−∆ψ = ωa1Din in R3 \ S.

The jump condition becomes

1

2

r
ρ |curlψ − Ve3|2

z
+ σH = const on S.



Spherical solution with Hill’s vortex core

Streamlines of ψS in axisymmetric coordinates



Spherical solution with Hill’s vortex core

A first solution is given by S the sphere of radius R

ψS(x) =

−x2
x1
0

 ·


3a

4

(
R2 − |x |2

)
+

VS

2
for |x | ≤ R

VS

2

R3

|x |3
for |x | > R,

where VS = |a|R2
√

ρin

ρout is determined such that

1

2

q
ρ|curlψS − VSe3|2

y
=

9

8R2

(
a2R4ρin − ρoutV 2

S

)
(x21 + x22 )

is constant on the sphere of radius R and thus

1

2

q
ρ|curlψS − VSe3|2

y
+ σH = 2σR = const.



Spherical solution with Hill’s vortex core

A first solution is given by S the sphere of radius R

ψS(x) =

−x2
x1
0

 ·


3a

4

(
R2 − |x |2

)
+

VS

2
for |x | ≤ R

VS

2

R3

|x |3
for |x | > R,

with VS = |a|R2
√

ρin

ρout .

Vortex sheet, i.e. nonzero jump of US · τ at S, whenever VS ̸= aR2.



Spherical solution with Hill’s vortex core

Streamlines of ψS in axisymmetric coordinates



The overdetermined free boundary value problem

Given parameters ρin, ρout, a,R,V find surface S and stream function ψ

solution to


−∆ψ =

15

2
a s sin θeφ1Din in R3 \ S

ψ =
V

2
s sin θeφ on S

1

2

r
ρ |curlψ − Ve3|2

z
+ σH = const on S

Spherical coordinates (s, θ, φ) ∈ [0,∞)× [0, π)× [0, 2π).



The overdetermined free boundary value problem

Given parameters ρin, ρout, σ, a,R,V find a surface S and

a stream function ψ solution to


−∆ψ =

15

2
a s sin θeφ1Din in R3 \ S

ψ =
V

2
s sin θeφ on S

1

2

r
ρ |curlψ − Ve3|2

z
+ σH = const on S

Weber number: We =
ρoutV 2R

σ

Vortex Weber number: γ =
ρina2R5

σ



The overdetermined free boundary value problem

Rescale to R = 1 and decompose

ψ =

(
aψin +

V

2
s sin θ eφ

)
1Din + Vψout1Dout ,

with ψin : Din → R3 solution to−∆ψin = 15
2 s sin θ eφ in Din,

ψin = 0 on S,

and ψout : Dout → R3 vanishing at infinity and solving−∆ψout = 0 in Dout,

ψout = 1
2s sin θ eφ on S.

Jump condition:
γ

2
|curlψin|2 − We

2
|curlψout − e3|2 + H = const on S.



Perturbation of the spherical solution

For a shape function η ∈ Hβ(S2) we consider

Sη =
{
(1 + η(x))x : x ∈ S2

}
.

In axisymmetric coordinates:

S2 Sη

r

x3



Perturbation of the spherical solution

For a shape function η ∈ Hβ(S2) we consider

Sη =
{
(1 + η(x))x : x ∈ S2

}
,

with Din
η and Dout

η well-defined if η > −1.

We impose

- axi-symmetry η = η(θ), and

- reflection invariance across the reference plane, η(π2 − θ) = η(π2 + θ)

and write Hβ
sym(S2) for that subspace.

Set Mβ = {η ∈ Hβ
sym(S2) :

∣∣Din
η

∣∣ = 4
3π and ∥η∥Hβ ≤ c0} for c0 > 0 small.



Perturbative ansatz

We introduce the functional F : R× R×Mα+2 → Hα
sym(S2)/const as

F(γ,We, η) =
γ

2

∣∣(curlψin
η ) ◦ χη

∣∣2 − We

2

∣∣(curlψout
η ) ◦ χη − e3

∣∣2 + Hη ◦ χη

where χη = (1 + η(x))x .

Goal: find We, γ and η such that

F(γ,We, η) = const.

Spherical solution:

F(γ, γ, 0) = 2 = const.



(1) F(γ,We, η) = const
Theorem (MNS ’25):

Let β > 2. There exists c0 = c0(β) > 0 and an increasing sequence

Γ = (γk)k∈N of positive numbers diverging to infinity with:

(A) For any γ ∈ [0,∞) \ Γ and any We close to but different from γ,

there exists a unique nontrivial (smooth) solution η = η(γ,We) ∈ Mβ

to the jump equation (1).

If γ = εδin and We = εδout for two nonnegative constants δin ̸= δout and

a small parameter ε, we have the asymptotic expansion

ηε = ε
3

32
(δin − δout)

(
3 cos2 θ − 1

)
+ o(ε) as ε→ 0.

(B) For any k ∈ N, there exists a unique local curve s 7→ γ(s) passing

through γk and there are associated nontrivial (smooth) shape functions

η(s) ∈ Mβ such that the equation (1) is solved at (γ(s), γ(s), η(s)).



Remarks on the Theorem

k 1 2 3 4 5 6

γk 2.20516 3.07529 3.94492 4.81679 5.69137 6.56836

1 3 5 7 9 11 13 15

0

50

100

k



Remarks on the Theorem (A)

We > γ We = γ We < γ



Remarks on the Theorem (B)

We = γ γ1 γ2



Remarks on the Theorem

Experimental observations

Droplet Motion in Purified Systems, S. Winnikow and B. T. Chao (1966)



Corollary (MNS ’25):

There exist values of γ close to the bifurcation set Γ for which

non-spherical steady vortex solutions with We = γ exist. In particular,

for these values, the spherical vortex is non-unique.

In the one fluid setting (ρin = ρout) without surface tension (σ = 0)

the spherical solution with Hill’s vortex core is unique

up to translations (Amick-Fraenkel ’86).



Remarks on the Theorem

Physics literature:

- Moore ’58 derives the formal asymptotics of the shape for small

Weber numbers neglecting the internal motion (ρin = 0).

- Harper ’72 explains that the inner circulation can be approximated

by Hill’s vortex core.

- Pozrikidis ’89 provides numerical evidence of the bifurcation branch

and finds approximations for γ1, γ2.



Remarks on the Theorem

Mathematical literature:

- Crowdy-Wegmann ’00 investigate two-dimensional vortex sheets

- Meyer-Seis ’24 construct bubble rings

- Baldi-La Manna-La Scala ’25 construct rotating solutions of

close-to-spherical shape

- Murgante-Roulley-Scrobogna ’25 investigate the dynamics of

of close-to-spherical vortex sheets



(1) F(γ,We, η) = const
Theorem (MNS ’25):

Let β > 2. There exists c0 = c0(β) > 0 and an increasing sequence

Γ = (γk)k∈N of positive numbers diverging to infinity with:

(A) For any γ ∈ [0,∞) \ Γ and any We close to but different from γ,

there exists a unique nontrivial (smooth) solution η = η(γ,We) ∈ Mβ

to the jump equation (1).

If γ = εδin and We = εδout for two nonnegative constants δin ̸= δout and

a small parameter ε, we have the asymptotic expansion

ηε = ε
3

32
(δin − δout)

(
3 cos2 θ − 1

)
+ o(ε) as ε→ 0.

(B) For any k ∈ N, there exists a unique local curve s 7→ γ(s) passing

through γk and there are associated nontrivial (smooth) shape functions

η(s) ∈ Mβ such that the equation (1) is solved at (γ(s), γ(s), η(s)).



Idea of the proof

Recall

Mα+2 =

{
η ∈ Hα+2

sym (S2) :
∣∣Din

η

∣∣ = 4

3
π and ∥η∥Hα+2 ≤ c0

}
c0 small; α > 0 (⇝ Sobolev embedding; algebra property),

F : R× R×Mα+2 → Hα
sym(S2)/const,

F(γ,We, η) =
γ

2

∣∣(curlψin
η ) ◦ χη

∣∣2 − We

2

∣∣(curlψout
η ) ◦ χη − e3

∣∣2 + Hη ◦ χη

F(γ, γ, 0) = const for all γ > 0.



Idea of the proof

Observe that F is Fréchet differentiable.

We calculate

DηF(γ, γ, η)|η=0 : T0Mα+2 → Hα
sym(S2)/const,

which turns out to be invertible precisely if γ /∈ Γ = (γk)k∈N.

- If γ /∈ Γ we can employ the implicit function theorem

to deduce part (A).

- At γ ∈ Γ we perform a bifurcation analysis by employing

the Crandall-Rabinowitz theorem to prove part (B).



The curvature term

The curvature of a graph over the sphere can be written as

Hη ◦ χη =
1

1 + η

(
2
1 + η
√
gη

− ∆S2η√
gη

−∇S2
1

√
gη

· ∇S2η

)
where gη = (1 + η)2 + |∇S2η|

2.

We deduce

DηHη ◦ χη|η=0 = − (∆S2 + 2Id).

Recall that the spherical harmonics {Ym
l : l ∈ N,−l ≤ m ≤ l} form

an eigenbasis for this operator with eigenvalues (l + 2)(l − 1).



A first part of the proof

At γ = 0 the curvature term dominates

DηF(0, 0, η)|η=0 = − (∆S2 + 2Id) : T0Mα+2 → Hα
sym(S2)/const.

Moreover, T0Mα+2 =
{
η ∈ Hα+2

sym (S2) :
∫
S2 ηdσ = 0

}
and

Hβ
sym(S2) :=

{
f ∈ Hβ(S2) : ⟨f ,Ym

l ⟩ = 0 if l is odd or m ̸= 0
}
.

Hence, the operator is invertible and we can locally solve

F
(
εδin, εδout, ηε

)
= const, ε ∈ [0, ε0)

for functions (ηε)ε∈[0,ε0). Noting that

DεF
(
εδin, εδout, 0

)∣∣
ε=0

= −3

2

√
π

5
(δin − δout)Y 0

2 (θ)

gives the first-order asymptotics.



The jump term

A longer calculation reveals that

⟨DηF(γ, γ, η)|η=0, δη⟩ =
9

2
γ sin θ eφ·(2Id− Λ)(sin θ δη eφ)− (∆S2 + 2Id) δη,

where Λ is the Dirichlet-to-Neumann map for the Laplacian
on the unit ball in R3.



Analysis of the linearisation

We write

[A(µ)](δη) =
2

9γ
⟨DηF(γ, γ, η)|η=0 , δη⟩

= sin θ eφ·(2Id− Λ)(sin θ δη eφ)− µ(∆S2 + 2Id)δη,

for µ = 2
9γ .

Finding µ > 0 such that kerA(µ) ̸= {0} is equivalent to the eigenvalue

problem of the symmetric and compact operator

K = (∆S2 + 2Id)−
1
2 sin θ eφ·(2Id− Λ)(sin θ

(
(∆S2 + 2Id)−

1
2 δη

)
eφ)



Analysis of the linearisation

In representation via spherical harmonics

δη =
∞∑
k=1

vkY
0
2k(θ)

this is an infinite matrix operator in weighted sequence spaces

hα :=

{
v = (vk)k∈N : ∥v∥2hα :=

∞∑
k=1

k2αv2k <∞

}
.



Analysis of the linearisation

The operator K can be written as an infinite Jacobi matrix

K =



A1 B1 0

B1 A2 B2
. . .

0 B2 A3 B3
. . .

. . . B3 A4
. . .

. . .
. . .

. . .



Ak = − 16k3 + 4k2 − 8k − 1

64k4 + 112k3 + 44k2 − 7k − 3
∼ − 1

4k

Bk =
(k + 1)(2k − 1)(2k + 1)

(4k + 3)
√
64k6 + 288k5 + 420k4 + 180k3 − 69k2 − 63k − 10

∼ 1

8k



Analysis of the linearisation Recall: µ =
2

9γ

Lemma:

Let α ≥ 0.

a) For any µ ̸= 0, the operator A(µ) : hα+2 → hα is a symmetric Fredholm

operator of index 0.

b) For µ > 0, the nullspace N(A(µ)) of A(µ) is at most one-dimensional

and N(A(µ)) ⊂ hβ for all β ≥ 0. Moreover, N(A(µ)) = {0} for µ ≤ 0.

c) There exists a strictly decreasing sequence (µk)k∈N ⊂ R+ with limit 0

such that A(µk) has a 1-dimensional nullspace and A(µ) is invertible

if µ /∈ {µk : k ∈ N} ∪ {0}.
d) We have µ1 ≤

√
2

21
√
5
+

√
5

22
√
13

+ 127
2079 ≈ 0.119394.

e) For 0 ̸= vk ∈ N(A(µk)), we have the transversality condition

DµA(µ)
∣∣
µ=µk

vk /∈ R(A(µk)).



Proof of the Theorem (A)

As before, we employ the implicit function theorem to

(ε, η) 7→ F
(
γ + εδin, γ + εδout, η

)
whenever γ /∈ Γ and obtain (ηε)|ε|<ε0 such that

F
(
γ + εδin, γ + εδout, ηε

)
= const for all ε ∈ (−ε0, ε0).



Proof of the Theorem (B)

Theorem of Crandall and Rabinowitz ’71:

Let M be a smooth Banach manifold and Y be a Banach space, I ⊂ R
some open interval, and G : I ×M → Y be continuous. Let w0 ∈ M. If

(1) G(λ,w0) = 0 for all λ ∈ I .

(2) The Fréchet derivatives DλG, DwG, D2
λwG exist and are continuous.

(3) There exists λ∗ ∈ I and w∗ ∈ Tw0M such that Y /R(DwG(λ∗,w0))

and N(DwG(λ∗,w0)) = span (w∗) is 1-dimensional.

(4) D2
λwG(λ,w)|(λ,w)=(λ∗,w0)w

∗ /∈ R(DwG(λ∗,w)|w=w0).

Then there exists a continuous local bifurcation curve {(λ(s),w(s))}|s|<ε

with ε small such that (λ(0),w(0)) = (λ∗,w0) and

{(λ,w) ∈ U : w ̸= w0,G(λ,w) = 0} = {(λ(s),w(s)) : 0 < |s| < ε}

for some neighbourhood U of (λ∗,w0) ∈ I ×M. Moreover,

w(s) = w0 + sw∗ + o(s) in M, |s| < ε.



Proof of the Theorem (B)

We apply the theorem of Crandall-Rabinowitz to

F : (0,∞)×Mα+2 → Hα
sym(S2)/const, (γ, η) 7→ F (γ, γ, η).

As

DηF(γ, η)|η=0 =
9

2
γA

(
2

9γ

)
: T0Mα+2 → Hα

sym(S2)/const

the assumptions (1)–(4) in the theorem of Crandall and Rabinowitz

are a consequence of the previous lemma.
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Video references
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3. https://www.youtube.com/watch?v=NjB7LXSQoQc

4. https://www.youtube.com/shorts/StysjXb9isQ
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