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Kinetic equations



Here: (t,x,v) € Q7 = (0, T) x Q, x Q, C R*27,
Study particle density f = f(t,x,v): Qr - R



Kolmogorov equation

Here: (t,x,v) € Q7 = (0, T) x Q, x Q, C R*27,
Study particle density f = f(t,x,v): Q7 — R solution to

Of +v-V,f =V, (a(t,x,v)V,F)



Kolmogorov equation

Here: (t,x,v) € Q7 = (0, T) x Q, x Q, C R*27,
Study particle density f = f(t,x,v): Q7 — R solution to

Of +v-V,f =V, (a(t,x,v)V,F)
with a: Q7 — R"*" measurable such that

(HL) A ’5|2 < (a(t,x,v)§, &) forall £ € R" and a.e. (t,x,v) € Qr
(H2) 3 aj(t, x,v)[? < A% forae. (tx,v)eQr
ij=1

and some constants 0 < A < A.



Kinetic geometry

Of +v-Vuf =A,f

Scaling invariance:
A= (A2t A3x, Av)
Translation invariance:

(to,Xo, Vo) — (t — to, X — Xg — (t — i‘o)Vg7 vV — Vo)



Kinetic geometry

Of +v-Vuf =A,f

Scaling invariance:
A= (A2t A3x, Av)
Translation invariance:
(to, x0, vo) — (t — to,x — x0 — (t — to)vo, Vv — vp)
Kinetic cylinders:
Qr(to, x0, v0)
—{-rP<t—t<0, [x—x0—(t—to)w| < r’ |[v—v| <r’}

Can work at unit scale from now on.



Energy estimate

Testing (1) with f¢? for a cutoff function ¢ yields (formally):

0 0
sup / 172, )2 d(x, v) + / / V(% v) < / / 12 d(2, %, v)
te(—1,0] J B1(0) —1.JB(0) —2.JBy(0)

Natural solution space

LX(L3,) N L2 (H7)



Weak solutions

Definition:
A function f € L°L2 (Q7) N L2, HL(Q7) is a weak (sub-, super-)

t,x' v

solution to (1) if for all ¢ € C2°(27) with ¢ > 0 we have

/[— (O +v-Vy)p+ (aV,f,V,0)|d(t,x,v) = (>, <)0.

(0, T)xR2n



Weak solutions

Definition:
A function f € L°L2 (Q7) N L2, HL(Q7) is a weak (sub-, super-)

t,x' v

solution to (1) if for all ¢ € C2°(27) with ¢ > 0 we have

/[— (O +v-Vy)p+ (aV,f,V,0)|d(t,x,v) = (>, <)0.

(0, T)xR2n

Literature:

- Regularity, existence and uniqueness of weak solutions together
with P. Auscher and C. Imbert 24

- previous works: Carrillo 98, Albritton-Armstrong-Mourrat-Novack 24,
N.-Zacher 21, Nystrom-Litsgard 21



What can we say a priori about the

regularity of weak (sub-, super-) solutions?



Kinetic De Giorgi-Nash-Moser theory



Harnack inequality

Theorem (GIMV 19, GI 22, GM 22):

There exists a universal const C = C(n, A, A\) > 0 such that for
any nonnegative weak solution f of (1) in Q we have

supf < Cinf f.
Q_ Q+

Supf inf f
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De Giorgi-Nash-Moser theory

COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, VOL. XXIV, 727-740 (1971)

On a Pointwise Estimate for Parabolic
Differential Equations*

J. MOSER

§1. The purpose of this note is to describe a simplified proof of a theorem
on linear parabolic differential equations which was published earlier in this
journal (cf. [6]). This theorem gives a pointwise estimate for positive weak
solutions of linear parabolic differential equations and is usually referred to as
the Harnack inequality since it generalizes a classical inequality by Harnack for
positive harmonic functions. The proof of this theorem for parabolic equations
with variable coefficients uses a collection of a priori estimates for the powers and
the logarithm of the solutions which are played out against each other with the
help of general inequalities, primarily consequences of Sobolov’s inequality.
At one point, however, our previous argument required a new estimate (called
Main Lemma in [6]) which generalizes an interesting theorem by F. John and
L. Nirenberg. The proof of this lemma is quite intricate and it was desirable to
avoid it entirely.



Moser's 1971 method in kinetic theory



Moser's 1971 method in parabolic theory

Sobolev inequality testing with

\/

Moser iteration ‘ testing with £~1 ‘ ‘ Poincaré inequality ‘
Y \/
LP—L> estimates weak Ll-estimate for the logarithm

—= ==

Lemma of Bombieri and Giusti

Y

Y

Harnack inequality Holder continuity




Towards Moser’'s 1971 method in kinetic theory

Sobolev inequality testing with %

\/

Moser iteration

Y

testing with 1

Poincaré inequality

\/

LP—[°° estimates

weak Ll-estimate for the logarithm

— =

Lemma of Bombieri and Giusti

Y

Harnack inequality

Y

Holder continuity




The logarithm

Suppose that f is a positive weak supersolution to
Of +v-Vif =V, (a(t,x,v)V,f)
then the g = log f is a weak supersolution to

oig+v-Vyg=V, -(aV,g)+ (aV,g,V,g).



Towards Moser’'s 1971 method in kinetic theory

Sobolev inequality testing with %

\/

Moser iteration

Y

testing with 1

Poincaré inequality

\/

LP—[°° estimates

weak Ll-estimate for the logarithm

— =

Lemma of Bombieri and Giusti

Y

Harnack inequality

Y

Holder continuity




Jerison’s Poincaré inequality

Theorem (Jerison 86):

Let Xo, ..., Xm be smooth vector fields satisfying Hormanders

rank condition. Then,

|f — fg > dx < Cr2/ > IXif]? dx.
By Brizo

Here, B, are balls with respect to a natural metric.



Jerison’s Poincaré inequality - kinetic?

Theorem (Jerison 86):

Let Xp, ..., Xm be smooth vector fields satisfying Hormanders

rank condition. Then,

|f — fg > dx < Cr2/ > IXif]? dx.
By Brizo

Here, B, are balls with respect to a natural metric.

Kinetic: Xo =0:+v-Vsand X;i=90,,,i=1,...,n



Jerison’s Poincaré inequality - kinetic?

Theorem (Jerison 86):
We have

/ |f — fo. [ d(t, x, v) < Cr2/ |8:F 4+ v - Vif |2 + |V, F2d(t, x, v).
Qr Qr

Here, Q, are kinetic cylinders.

Kinetic: Xo =0+ +v-Vyand Xj=0,,,i=1,...,n



Jerison’s Poincaré inequality - kinetic?

Theorem (Jerison 86):
We have

/ |f — fo. [ d(t, x, v) < Crz/ |8:F 4+ v - Vif > + |V, F2d(t, x, v).
Qr Qr

Here, Q, are kinetic cylinders.

Need to treat O;f + v - V4 f =V, - h, for some h € L? at the correct scale.



Kinetic Poincaré inequality

Theorem (Guerand & Mouhot 22, N. & Zacher 22):

Let h € LY(Q;R") and ©? be supported in Q. Then, there
exists a constant C = C(n, ) > 0 such that for all
subsolutions £ > 0 to (1) in Q we have

[ =) 000+ 1 g < € (19 Fllrgey + Mhllrcay)

Qr @

O

(x,v)
T




Kinetic Poincaré inequality

Theorem (Guerand & Mouhot 22, N. & Zacher 22):

Let h € LY(Q;R") and ©? be supported in Q. Then, there
exists a constant C = C(n, ) > 0 such that for all
subsolutions £ > 0 to (1) in Q we have

|F = (Fe?) g )+

sy < € (I9F gy + Il

Spacetime Poincaré inequalities are “too weak” .



Trajectories

Euclidean 7(v) - Poincaré inequality:

1
f(v)— f(w) :/0 %f(w—f—r(v— w))dr



Trajectories
Euclidean 7(v) - Poincaré inequality:
td
f(v)—f(w)= / —f(w+r(v—w))dr
0 dr
Parabolic 7 (t, v)

f(tv) =~ frw) = [ S

0

with v: [0,1] — R x R" with v(0) = (1, w) and (1) = (t,v).



Trajectories
Euclidean 7(v) - Poincaré inequality:
Ld
f(v)—f(w)= / —f(w+r(v—w))dr
0 dr
Parabolic 7 (t, v)

Flev) = Fnw) = [ (s

with v: [0,1] — R x R" with v(0) = (1, w) and (1) = (t,v).

Parabolic trajectory: v(r) = (n + r(t —n), w + r*/2(v — w))



Towards Moser’'s 1971 method in kinetic theory

Sobolev inequality testing with %

\/

Moser iteration

Y

testing with 1

Poincaré inequality

\/

LP—[°° estimates

weak Ll-estimate for the logarithm

— =

Lemma of Bombieri and Giusti

Y

Harnack inequality

Y

Holder continuity




Towards Moser’'s 1971 method in kinetic theory

Sobolev inequality testing with %

\/

Moser iteration

Y

testing with !

Parabolic trajectories

Loocooooooroooooooo

LP—[°° estimates

weak Ll-estimate for the logarithm

— =

Lemma of Bombieri and Giusti

Y

Harnack inequality

Y

Holder continuity




Kinetic trajectories

Can we walk from (t,x,v) to (n,y,w) along 9: + v -V, and 0,,,...0,,7?

(n,y,w)



Kinetic trajectories

Can we walk from (t,x,v) to (n,y,w) along 9: + v -V, and 0,,,...0,,7?

(t,x,v)

(n,y,w)



Kinetic trajectories

Can we walk from (t,x,v) to (n,y,w) along 9: + v -V, and 0,,,...0,,7?

n

(t,x,v)
o
: U=
: .

! B 4v-Vy -7
v, ' 'V,
: H

E ’,,"‘ (777y7W)
.
(t,x, 7=%)



Kinetic trajectories

Can we walk from (t,x,v) to (n,y,w) along 9: + v -V, and 0,,,...0,,7?

(t,x,v)
o
: U=
: .

! B 4v-Vy -7
v, ' 'V,
: H

E ’,,"‘ (777y7W)
.
(t,x, 7=%)

J. Guerand and C. Mouhot. Quantitative De Giorgi methods in kinetic theory, J. Ecole polytech. - Math. 9 (2022), 1159-1181.



Kinetic trajectories

Can we walk from (t,x,v) to (n,y,w) along 9: + v -V, and 0,,,...0,,7?
L. N. and R. Zacher. On a kinetic Poincaré inequality and beyond, arXiv:2212.03199 (2022).

(t7>:7 v)

7.y’W
V\/ 8t+v'vX (n. )



Kinetic trajectories

Definition:

Let (t,x,v) and (n,y,w) € R™2" with 5 # t. A kinetic trajectory
is a map

v =) =7(ri (£, x,v), (0, y, w)) = (7e(r), (), (r)) € RIF2"
defined for r € [0,1] that is

- continuous on r € [0, 1] (and in particular bounded),

- differentiable on r € (0, 1),

- with endpoints v(0) = (¢, x, v) and (1) = (n,y, w),

- satisfying the constraint 7. (r) = 4:(r)7,(r) for r € (0,1).



Kinetic trajectories

Definition:

Let (t,x,v) and (n,y,w) € R™2" with 5 # t. A kinetic trajectory
is a map

v =) =7(ri (£, x,v), (0, y, w)) = (7e(r), (), (r)) € RIF2"
defined for r € [0, 1] that is sufficiently smooth

- with endpoints 7(0) = (¢, x,v) and (1) = (n,y, w),

- satisfying the constraint . (r) = 7:(r)7.(r) for r € (0,1).

For g: R*2" — R smooth

%g(v(r)) = Y¢(r)[0g] + Vx(r) - [Vxgl(7(r)) + v (r) - [Vvgl(7(r))



Kinetic trajectories

Definition:

Let (t,x,v) and (n,y,w) € R™2" with 5 # t. A kinetic trajectory
is a map

v =9(r) = y(r; (t,x,v), (0, y, w)) = (e(r), 1(r), 1(r)) € RHF2"
defined for r € [0, 1] that is sufficiently smooth

- with endpoints 7(0) = (¢, x,v) and (1) = (n,y, w),

- satisfying the constraint . (r) = 7:(r)7.(r) for r € (0,1).

For g: R*2" — R smooth

%g(v(r)) = Y¢(r)[0g] + V(1) - [Vxg)(7(r)) + v (r) - [Vvgl((r))

1:(r)[0cg + v - Vugl(7(r) + A (r) - [Vvel(v(r))-



Literature on trajectories

- Early works by Carathéodory 09, Rashevskii 38 and Chow 309.

- Breakthrough by Nagel, Stein and Wainger 85.

- Lots of works on Geometric Control theory.

- Trajectorial proof of Jerison's Poincaré inequality by
Lanconelli-Morbidelli 00.

- Kinetic trajectories are constructed in Pascucci-Polidoro 04.

In none of these results Xy and X1, ..., X, are treated at the right scale.



Critical kinetic trajectories

Today 4y =n — t.



Critical kinetic trajectories

Today 4y =n — t.

A kinetic trajectory is called a critical kinetic trajectory

if it additionally satisfies

1
2

(T (ri (£, 0), (1, W)Y 2) | ~ 1) ~

asr—0,r#0.



Critical kinetic trajectories

Today 4y =n — t.

A kinetic trajectory is called a critical kinetic trajectory

if it additionally satisfies

1
2

(T2 (ri (85,00, (0, W) 2) | ~ Fin()] ~ 7

asr—0,r#0.

Trajectories constructed in N.-Zacher 22 are not critical.
Neither are the ones in the follow-up work:

F. Anceschi, H. Dietert, J. Guerand, A. Loher, C. Mouhot, and A. Rebucci.
Poincaré inequality and quantitative De Giorgi method for hypoelliptic operators, 2024.



Critical kinetic trajectories

Lemma (DMNZ 24):

There exists a family of critical kinetic trajectories given by

7¢(r) t+(n—1t)
"5 T 0 (2) +8-0()
with properties such as
- Ay—e(0) = 0, Ay_(1) = Idap and B,_¢(0) = Idap, By_e(1) =0,
- det A,_¢(r) = r?", det B,_¢(r) ~ (1 — r)?",
- spatial uniform control y(r) € Q,

T _1
- criticality, i.e. |9 | < r72 and

’(Vy"”(r; (£, x,v), (0, W))fl)-;z‘ - ‘(A;Et)'ﬂ‘ N r2.



Construction of kinetic trajectories

Ansatz:
Ye =mn — t and 4, = go(r)mo + g1(r)m1
for two forcings go, g1: [0,1] — R and vectorial parameters mg, m; € R”.



Construction of kinetic trajectories

Ansatz:
Ye =mn — t and 4, = go(r)mo + g1(r)m1
for two forcings go, g1: [0,1] — R and vectorial parameters mg, m; € R”.

Integration yields

(r) = o(r)mo + &1(r)my

Y(r) = go(r)mo + g1(r)my + v.



Construction of kinetic trajectories

Ansatz:
Ye =mn — t and 4, = go(r)mo + g1(r)m1
for two forcings go, g1: [0,1] — R and vectorial parameters mg, m; € R”.

Integration yields

(r) = o(r)mo + £1(r)m

Y(r) = go(r)mo + gi(r)my + v

A kinetic trajectory needs to satisfy

Pr) = Fe(r)n(r) = (n = )go(r)mo + (n — t)gr(r)ms + (n — t)v



Construction of kinetic trajectories

Ansatz:
Ye =mn — t and 4, = go(r)mo + g1(r)m1
for two forcings go, g1: [0,1] — R and vectorial parameters mg, m; € R”.

Integration yields
(r) = o(r)mo + £1(r)m
Y(r) = &(r)mo + g1(r)mi + v
A kinetic trajectory needs to satisfy
(r) = (n = t)go(r)mo + (1 — t)gr(r)m1 + (n — t)v
() = (11— t)go(r)mo + (1 — t)gr(r)my + (n — t)rv + x



Construction of kinetic trajectories

Ansatz:
Ye =mn — t and 4, = go(r)mo + g1(r)m1
for two forcings go, g1: [0,1] — R and vectorial parameters mg, m; € R”.

Integration yields

W(r) = &o(r)mo + g1(r)my + v

W(r) = (n = t)go(r)mo + (n — t)gu(r)my + (n — t)rv + x
Endpoint condition determines the vectorial parameters

Yx(1) = (n — t)go(L)mo + (n — t)gr(L)m1 + (n —t)v +x =y

Ww(l) =go()mo + g1 (1)m; +v=w



Construction of kinetic trajectories

Ansatz:
Ye =mn — t and 4, = go(r)mo + g1(r)m1
for two forcings go, g1: [0,1] — R and vectorial parameters mg, m; € R”.

Integration yields

W(r) = &o(r)mo + g1(r)my + v

W(r) = (n = t)go(r)mo + (n — t)gu(r)my + (n — t)rv + x
Endpoint condition determines the vectorial parameters

(n—t)go(1)mo + (n — t)gr()my+ (n —t)v +x =y

go(l)mo+ gi(l)m; +v=w

Criticality is achieved for a good choice of the forcing.



Weak L!-estimate for log f (1) 0ef + v - Vif =V, - (aV,f)

Theorem (DMNZ 24):

Let 6,7 € (0,1) and € > 0. Then for any supersolution f > ¢ > 0 to (1)
there exists a constant C = C(n,d,n, A, A\) > 0 such that

s|{(t,x,v) € K_: log f(t,x,v) —c(f)>s}| < C

s{(t,x,v) € Ki: c(f) —logf(t,x,v) >s}| < C

for all s > 0 with (f) = Ci /B ezl 7 )Rl )il )
©

(x,v)
T

Vv
~

T

0 n 1



Proof of the weak L!-estimate

Unit size. a = Id for simplicity. Goal:

s|{(t,x,v) € K_: log f(t,x,v) —c(f)>s}| <C, s>0

K_ Ky




Proof of the weak L!-estimate

Recall

/ llog £1(7, y, w)3(y, w)d(y, w).
where

Co = / 902()/7 W)d()/7 W)'
B



Proof of the weak L!-estimate

Recall

/ llog £1(7, y, w)3(y, w)d(y, w).

Note that
sI{(t,x,v) € K_: log(f) — c(f) > s}
7

< 0/ B/ (llog F1(t, %, v) — c(F)+d(¢, %, v)



Proof of the weak L!-estimate

Recall

/ llog £1(7, y, w)3(y, w)d(y, w).

Note that

s|{(t,x,v) € K_: log(f) — c(f) > s}|

n—t

< / /a([logf](t,x,v)—C(f))gl(t,x,v)
0 B



Proof of the [!-estimate

Recall
o(f) = 1 / llog £1(7, y, w)3(y, w)d(y, w).
B

Goal: estimate
7’] L

o\

/ [log f](t,x,v) — c(f))4+d(t,x,v) < C

by a constant.
L1-Poincaré inequality in spacetime without a gradient.



Proof of the [!-estimate

Recall

_ 1 / llog F1(1, y, )2 (y, w)d(y, w).
B

Goal: estimate
L

n—
// llog f](t, x, v) — c(f))4d(t,x,v) < C
0

by a constant.
L1-Poincaré inequality in spacetime without a gradient.

Recall: if f is supersolution to (1), then g = log f is a supersolution to

Org +v-Vig=A0g+|Vyg|?



Proof of the [!-estimate

For g = log f we have

g(t,x,v) — (f)
=i [ (&(t.x.) — 801y, w)) 2. w)d(y. w)

/ [ et 20wt w



Proof of the L!-estimate
For g = log f we have
g(t,x,v) —c(f)
1

= — [ (gt x,v) = g(n.y, w)) ¢*(y, w)d(y, w)
v JB

:_Ct L[ sre0nr 26w w)

1
- _cl/ / 1(r)[0cg + v - V<gl(v(r)) + A (r) - [Vgl(v(r))dr ©?d(y, w)
v JBJO



Proof of the L!-estimate
For g = log f we have
g(t,x,v) —c(f)
1

= — [ (gt x,v) = g(n.y, w)) ¢*(y, w)d(y, w)
v JB

1;AA(jaﬂmm¢%%m«mm
1
‘1//r%rw£+wv@ww»+mmwv£mwmv&a%m

< //mm )+ [9vg (1(r)dr ¢2(y, w)d(y, w)

Cso

// A (r) - [Vogl(y(n)dr ¢*(y, w)d(y, w)



Proof of the L!-estimate
For g = log f we have
g(t,x,v) —c(f)
1

= — [ (gt x,v) = g(n.y, w)) ¢*(y, w)d(y, w)
v JB

7;4[;id%mw¢%%MM%M
1
‘1//r%rw£+wv@ww»+mmwv£mwmvﬁa%m

< //mm )+ [9vg (1(r)dr ¢2(y, w)d(y, w)

Cso

// A (r) - [Vogl(y(n)dr ¢*(y, w)d(y, w)

Idea: use quadratic gradient term to absorb all gradients



The forcing terms

. 1
Recall that |9,| < r™2, hence

1
B 1/ / A (r) - [Vvgl(y(n)dr ¢*(y, w)d(y, w)

/ / 2 Vgl (1(r))dr o(y, w)d(y, w)



Partial integration

/B A, g](1(r))e3(y, w)d(y, w)



Partial integration

Substitute (7, W) = ®(y, w) = D, ¢ x.v (v, w) := (3x(r), Ww(r)).
182810, wd(y. w)

/ [Avgl(re(r), 7, W)2(©X(F, @) [det A2 d(7, W)
®(B)



Partial integration

Substitute (7, W) = ®(y, w) = D, ¢ x.v (v, w) := (3x(r), Ww(r)).
/[Avg] )Ry, wid(y, w)
/ [Avgl(re(r), 7, W)2(©X(F, @) [det A2 d(7, W)
o(B)
— / (V2&l(re(r), 5. ), Vo 2(07X(7, @))) |det A (7, w)
®(B)

= —2/ (Vo8] (2(r), 7. W), [Vl T (71 (7, ) (A(r)).2)
®(B)

p(&7H (7, W)) - [det A|7H d(, W)



Partial integration

Substitute (7, W) = ®(y, w) = D, ¢ x.v (v, w) := (3x(r), Ww(r)).
/[Avg] )Ry, wid(y, w)
/ [Avgl(re(r), 7, W)2(©X(F, @) [det A2 d(7, W)
®(B)
— / (V2&l(re(r), 5. ), Vo 2(07X(7, @))) |det A (7, w)
®(B)
=2 [ (gl 5 ), [Tl (025 ) (A) )
®(B)

P(O71(F, W)) - |det A1 d(7, W)
=-2 /B ([Vvgl(1(n), [Vl " (v, w)(A(r) " 1)-2) oy, w)d(y, w)

<2 /B V0] (1())ely, w)d(y, w),



Conclusion

We obtain
(g(t,%) — ()

t )—c
1
5/0 /B<Mr_l/2vvg’(7(r))90()/aw)|va|2(’y(r))<,02(y,W))+d(y,w)dr

for some constant M > 0.



Conclusion
We obtain
(g(t,x) —c(f))+

t )—c
1
5/0 /B<Mr_l/2vvg’(7(r))90()/aw)|va|2(’y(r))<,02(y,W))+d(y,w)dr

for some constant M > 0.
Integrate on K_ and substitute (£, X, V) = y(r) for r ~ 0.

Calculating the r-integral from 0 to min{1/2, M?/p?} yields

1/2
/ (r*1/2l\/lp — p2> dr < M?
0 +

for all p > 0. Here p = |V, g| (£, X, V)o(y, w).



Conclusion
We obtain
(g(t,x) —c(f))+

t )—c
1
5/0 /B<Mr_l/2vvg’(7(r))90()/aw)|va|2(’y(r))<,02(y,W))+d(y,w)dr

for some constant M > 0.
Integrate on K_ and substitute (£, X, V) = y(r) for r ~ 0.

Calculating the r-integral from 0 to min{1/2, M?/p?} yields

1/2
/ (r*1/2l\/lp — p2> dr < M?
0 +

for all p > 0. Here p = |V, g| (£, X, V)o(y, w).



Moser's 1971 method in kinetic theory

Sobolev inequality

testing with

\/

Moser iteration testing with !

}

Kinetic trajectories

, \/

LP—[°° estimates

weak L!-estimate for the logarithm

—

Lemma of Bombieri and Giusti

Y

Y

Harnack inequality

Holder continuity




Harnack inequality

Theorem (DMNZ 24):

There exists a universal const C = C(n, \,\) > 0 such that for
any nonnegative weak solution f of (1) in Q we have

supf < Cinf f.
Q_ Q+

Supf inf f




Harnack inequality

Theorem (DMNZ 24):

There exists a universal const C = C(n) > 0 such that for
any nonnegative weak solution f of (1) in Q we have

supf < CHinff.
Q_ Qs+

Here, = % + A if a is symmetric. Optimal!

Q— Q+
sup f inf f

(x,v)4 |Q
T




Weak Harnack inequality

Theorem (DMNZ 24):

There exists a universal C(n, x1) > 0 such that for all p € (0,1 + 5-)
and any nonnegative weak supersolution f to (1) in Q we have

P
(/ |FIPd(t, x, v)) < Cinff.
= Q+

Optimal range for p.

Q— Q+
sup f inf f

(x, V)T Q




Euclidean smoothing

V—m

f=1~(v)— f(m)e? (
R

) r~"dm = /R f(v — rm)p?(m)dm

r



Parabolic smoothing

Space
f="1(t,v)— L f(t — sr,v — r'/?m)p?(m)dm
Spacetime
f=f(t,v)— f(t —sr,v —r'/?m)y?(s, m)d(s, m)

R1+n



Kinetic smoothing

Consider v(>™): R — R27 with m = (mg, m;) € R?", s # 0 defined as

(s,m)

ve o (r)

t+sr
A1 (£, x, v)) = zi:igg - (As(f) (22) * <(1) 51r> (t)>



Kinetic smoothing

Consider v(>™): R — R27 with m = (mg, m;) € R?", s # 0 defined as

(s,m)

ve o (r)

t+sr
A1 (£, x, v)) = zi:igg - (As(f) (22) * <(1) 51r> (t)>

Spacetime

Tt x,v) = — / F( ™ (1 (2, %, v))62(s, m)d(s, m)
Sy JQ



Kinetic Sobolev embedding

Theorem (DMNZ 24):

Let £ € L2(R17; HY(R")) such that 8;f + v -V,f =V, -h
for some h € L?(R'*27: R™), then

|l 2 gasany < € (90 Fllzqgrrany + 1Al o)

with K =1+ 2 and C = C(n) > 0.



Kinetic Nash inequality

Theorem (DMNZ 24):

Let £ € L2(RM7; HY(R")) N L1(R'+2") such that we have
O¢f + v -Vif =V, - hfor some h € L?(R'*2";R"), then

+
153 < €IV Faqgarany & 1l aggrsany 11 o

for some C = C(n) > 0.
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