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. Experiments (videos, links on the last slide)
. Two-phase Euler equations with surface tension

. Travelling wave solutions and an overdetermined elliptic free
boundary value problem

. Close-to-spherical solutions (theorem, remarks, and proof)



Two-phase Euler equations
Velocity field of the fluid U: R x R3 — R3 solution to
p(0:U+ (U-V)U)+VP=0 in R x R®

V-U=0 in R x R3
[U-n]=0 on S(t)

Outer phase D°t

Inner phase D"



Two-phase Euler equations

Velocity field of the fluid U: R x R3 — R3 solution to

p(0:U+ (U-V)U)+VP=0 in R x R®
V-U=0 in R x R3
[U-n]=0 on S(t)

where
- P: R x R3® — R is the pressure
- S(t) is the interface separating the inner D'"(t) and
outer D°Ut(t) fluid domain
- p(t) = pi”]lpin(t) + p°" L pou(y) for P, p°Ut > 0, is the density function

- [f] = Ut — £ the jump of a quantity f across the interface.



Two-phase Euler equations

Velocity field of the fluid U: R x R3 — R3 solution to

p(0:U+ (U-V)U)+VP=0 in R x R®
V-U=0 in R x R3
[U-n]=0 on S(t)

where
- P: R x R3® — R is the pressure
- S(t) is the interface separating the inner D'"(t) and

outer D°Ut(t) fluid domain

- p(t) = pi”]lpin(t) + p°" L pou(y) for P, p°Ut > 0, is the density function.

[ll-posed due to Kelvin-Helmholtz instability!



Two-phase Euler equations with surface tension

Velocity field of the fluid U: R x R3 — R3 solution to

p(0:U+ (U-V)U)+VP =0 in R x R3
V-U=0 in R x R3

[P] =cH on S(t)

[U-nj=0 on S(t)

where
- we take into consideration the Young-Laplace law
- H is the mean curvature (H = 2 for the unit ball)

- 0 > 0 is the surface tension



Two-phase Euler equations with surface tension

Velocity field of the fluid U: R x R3 — R3 solution to

p(0:U+ (U-V)U)+VP =0 in R x R3
V-U=0 in R x R3

[P] =cH on S(t)

[U-nj=0 on S(t)

Literature:

- Lots of physics literature. Influential: Hou-Lowengrub-Shelly '97

- Locally well-posed: lguchi-Tanaka-Tani '97, Ambrose '02, Schweizer '05,
Ambrose-Masmoudi '2007, Cheng-Coutand-Shkoller '08,
Coutand-Shkoller '08

- A priori regularity: Shatah-Zeng '08

- Finite-time singularities: Coutand-Shkoller '14,

Castro-Cérdoba-Fefferman-Gancedo-Gémez-Serrano '12



Traveling wave solutions

We make the ansatz

U(X) = U(t,X1,X2,X3 + Vt) — Ves
p(x) = P(t,x1,x2,x3 + Vt)
S(t) =8 + tVes,

for some speed V > 0.



Traveling wave solutions

The time-independent u, p, S solve the steady two-phase Euler equations

p(u-V)u+Vp=0 in R3\S,
V-u=0 in R3,
[p] = oH on S,
u-n=0 on S.

with lim u(x) = — Ves.
[x|—00



Traveling wave solutions
Bernoulli equations (for steady flows) for the inner/outer phase are

in

P
2

out

r_
2

‘uin‘Q + p™™ = const,

‘uom}z + p°"* = const.

We rewrite the interfacial condition
[Pl=0H onS
Rewrite the interfacial condition as

1
5[[p|u|2]] + oH = const on S.



Traveling wave solutions

We are interested in axisymmetric and swirl-free vector fields

(u= u(r,z) and azimutal component u, = 0).

We assume uniform vorticity distribution in the inner phase, i.e.

. 15 [\ 15
curl " = w,; = Ea X1 = 73 re,
0

for a € R.

The fluid in the outer domain is assumed to be irrotational curl u°'t = 0.

4
The volume is |S| = §7TR3.



Traveling wave solutions

We work with the vector stream function 1: R3 — R3 with
u = curly — Ves.
The tangential flow and the axisymmetry no-swirl condition yields
%4
Y= —re,onS.
2
The identity curlcurl = VV - —A implies
—A) = wylpn in R3\ S,
The jump condition becomes

1
5 [[p|curl1/1 - \/€3|2]] + oH = const on S.



Spherical solution with Hill's vortex core

Streamlines of s in axisymmetric coordinates



Spherical solution with Hill's vortex core

A first solution is given by S the sphere of radius R

3a
— X5 T< ||) 75 for |x] <R
vs(x)=1| x| - 3
0 s R for |x| > R
RTINS 52 :
2 |x°

where Vs = |a| R2, /£ L is determined such that

f[[p|cur11/15 — Vses| ﬂ N ( R4 o pO“tV_g) (x12 +X22)

is constant on the sphere of radius R and thus

1
5 [plcurl s — V5e3\2]] + oH = 20 R = const.



Spherical solution with Hill's vortex core

A first solution is given by S the sphere of radius R

3a
— X5 Z( ||) 75 for |x] <R
vs(x)=1| x| - 3
0 s R for |x| > R
RTINS 52 :
2 |x°

with Vs = |a| R?y /L5

Vortex sheet, i.e. nonzero jump of Us - 7 at S, whenever Vs # aR?.



Spherical solution with Hill's vortex core

Streamlines of s in axisymmetric coordinates



The overdetermined free boundary value problem

Given parameters pi", p°'t, a, R, V find surface S and stream function v

solution to

1
AR ;assin96¢1pan inR3\ S
4
e Essin fe, on S

1
5 [[p |curl¢p — Ve3]2ﬂ +o0H =const onS

vanishing at infinity.

Spherical coordinates (s, 8, ¢) € [0,00) x [0,7) X [0, 27).



The overdetermined free boundary value problem

Given parameters p", p°'t, 5, a, R, V find a surface S and

a stream function v solution to

1
—Ayp = ;assin96¢1pan inR3\ S
4
e Essin fe, on S

1
5 [[p |curl¢p — Ve3]2ﬂ +o0H =const onS

pout V2R

g

Weber number: We =

in 2R5
Vortex Weber number: v = p_a




The overdetermined free boundary value problem

Rescale to R = 1 and decompose
in v . out
¢ = aT!J + ES Sin 9 eso ]lDin =+ V’IZ) ]].Dout,

with 4" : D" — R3 solution to
—Ayi" = ssm«9e¢ in DI,
YPi" =0 on S,
and 1°Ut: DOt 5 R3 vanishing at infinity and solving
Ayeut = in Dot

out __
Y 2ssm0e<p onS.

W
Jump condition: %\curhﬁ'”\z - ;\curlgbout — e3]? + H = const on S.



Perturbation of the spherical solution

For a shape function 7 € H?(S?) we consider
Sy ={1+n(x))x:xe Sz}.
In axisymmetric coordinates:

X3
S? Sy




Perturbation of the spherical solution

For a shape function 7 € H?(S?) we consider
Sy ={1+n(x))x:xe Sz},
with D%" and D,‘;”t well-defined if n > —1.

We impose

- axi-symmetry n = n(#), and

- reflection invariance across the reference plane, 7(5 — 0) = n(5 + 6)

and write HZ _(S?) for that subspace.

sym

Set MP = {n ¢ Hsﬁym(Sz) : |D17"’ =% and [|n|lys < co} for co > 0 small.



Perturbative ansatz

We introduce the functional F: R x R x M2 — H‘S)‘ym(Sz)/conSt as

i 2 We 2
‘(curlwn”) oxn| - — !(curlv,bg“t) o Xn — 6’3‘ + Hy o xy

¥
‘F(’)/?WG? 77) = E 2

where x;, = (1 4+ n(x))x.
Goal: find We, v and 7 such that

F(~, We,n) = const.
Spherical solution:

F(v,7,0) = 2 = const.



Theorem (MNS '25):

Let B > 2. There exists ¢p = co(/3) > 0 and an increasing sequence

I = (7 )ken of positive numbers diverging to infinity with:
(A) For any v € [0,00) \ T and any We close to but different from -,
there exists a unique nontrivial (smooth) solution 1 = n(y, We) € M”
to the jump equation (1).
If v = 8" and We = £§°"t for two nonnegative constants 6" # §°Ut and

a small parameter €, we have the asymptotic expansion

Ne = 55—2(5'” 5°") (3cos® 6 — 1) + o() as € — 0.

(B) For any k € N, there exists a unique local curve s — 7(s) passing
through 7, and there are associated nontrivial (smooth) shape functions
n(s) € M? such that the equation (1) is solved at (y(s),y(s),n(s)).



Remarks on the Theorem

k 1 2 3 4 5 6
Yk | 2.20516 | 3.07529 | 3.94492 | 4.81679 | 5.69137 | 6.56836
T
°
100 |
[ ]
50 3
[
o ®
e o0 0 0 0 0 ¢ ,
0 T | | | | | |
1 3 5 7 11 13 15










Remarks on the Theorem

(d)

Experimental observations
Droplet Motion in Purified Systems, S. Winnikow and B. T. Chao (1966)




Corollary (MNS '25):

There exist values of v close to the bifurcation set I' for which

non-spherical steady vortex solutions with We = ~ exist. In particular,

for these values, the spherical vortex is non-unique.

In the one fluid setting (p™ = p°“t) without surface tension (o = 0)
the spherical solution with Hill's vortex core is unique

up to translations (Amick-Fraenkel '86).



Remarks on the Theorem

Physics literature:

- Moore '58 derives the formal asymptotics of the shape for small

Weber numbers neglecting the internal motion (p'" = 0).

- Harper '72 explains that the inner circulation can be approximated

by Hill's vortex core.

- Pozrikidis '89 provides numerical evidence of the bifurcation branch

and finds approximations for 1, .



Theorem (MNS '25):

Let B > 2. There exists ¢p = co(/3) > 0 and an increasing sequence

I = (7 )ken of positive numbers diverging to infinity with:
(A) For any v € [0,00) \ T and any We close to but different from -,
there exists a unique nontrivial (smooth) solution 1 = n(y, We) € M”
to the jump equation (1).
If v = 8" and We = £§°"t for two nonnegative constants 6" # §°Ut and

a small parameter €, we have the asymptotic expansion

Ne = 55—2(5'” 5°") (3cos® 6 — 1) + o() as € — 0.

(B) For any k € N, there exists a unique local curve s — 7(s) passing
through 7, and there are associated nontrivial (smooth) shape functions
n(s) € M? such that the equation (1) is solved at (y(s),y(s),n(s)).



Idea of the proof

Recall
. 4
w2 =L € HE2(E?) : D] = G and [l < o}
co small; & > 0 (~ Sobolev embedding; algebra property),

F:R xR x MOH_z — Hgym(Sz)/const,

v i 2 We 2
F(o, We,n) = 3 |(eurluf) o x| = 5 | (curl ™) o xy — &3] + Hy oy

2
F(~,7,0) = const for all v > 0.



Idea of the proof

Observe that F is Fréchet differentiable.
We calculate

DyF (%5 Mg + ToM* T2 = HE 1 (S?)/ const
which turns out to be invertible precisely if v ¢ I' = (vx)ken-

- If v ¢ T we can employ the implicit function theorem

to deduce part (A).

- At v € T we perform a bifurcation analysis by employing
the Crandall-Rabinowitz theorem to prove part (B).



The curvature term

The curvature of a graph over the sphere can be written as

1 1 A
Hy o xn = <2 \/";7) \/Sin VS2\/> ng)

where g, = (14 1)? + |Ven|?.

We deduce
DyH, o Xﬂ‘n:o = — (Ag2 + 21Id).

Recall that the spherical harmonics {Y,” : / € N, —/ < m < [} form

an eigenbasis for this operator with eigenvalues (/ + 2)(/ — 1).



A first part of the proof

At v = 0 the curvature term dominates
DT)]:(Oa 0,7])|77:o = - (AS2 + 2Id) MOHQ - Hgym( 2)/Const-

Moreover, ToM*T2 = {5 € Hf‘yJ]fn2 (S?) : Jo pdo =0} and
(S2) := {f € HP(S?) : (f, Y;") = 0 if | is odd or m # 0}.

sym
Hence, the operator is invertible and we can locally solve
F (e6™,£6°%, n.) = const, € € [0,e0)

for functions (7:)-¢[0,c,)- Noting that

D.F (6™,e6°",0)|__, = —2\/?5‘” — M Y2(6)

gives the first-order asymptotics.



The jump term

A longer calculation reveals that
9 .
(DpF (7,7, 1) In=0, 1) = 57 sinf e, (2Id — A)(sin 0 dne,) — (Asz + 21d) on,

where A is the Dirichlet-to-Neumann map for the Laplacian
on the unit ball in R3.



Analysis of the linearisation

We write
2
[A(w)](0n) = @(an(% Vs M)lyo 07
=sinf e, (2Id — A)(sin0dne,) — p(As2 + 21d)dn,

for u = %.

Finding 1 > 0 such that ker A(u) # {0} is equivalent to the eigenvalue

problem of the symmetric and compact operator

K = (Ag + 21d) "2 sin§ e, (21d — A)(sin 6 <(AS2 + 2Id)*%5n> e,)



Analysis of the linearisation

In representation via spherical harmonics
o0
0
on = Z Vi Yoi (6)
k=1

this is an infinite matrix operator in weighted sequence spaces

h® = {V = (Vi )ken : HV”ﬁa = kavlg < 00}'

k=1



Analysis of the linearisation

The operator K can be written as an infinite Jacobi matrix

Al B 0
B, A B
- 0 B, A; Bs
. By A4
16k3 + 4k2 — 8k — 1 1

A = — ~
k 64k% + 112k3 + 44k2 — Tk — 3 4k

(k+1)(2k — 1)(2k + 1) 1

B = ~
“ " (4k + 3)\/64Kk® + 288K + 420k* + 180K® — 69k2 — 63k — 10 8k




Analysis of the linearisation

Lemma:

Let o > 0.

a) For any p1 # 0, the operator A(u) : h®t2 — h® is a symmetric Fredholm
operator of index 0.

b) For 1 > 0, the nullspace N(A(x)) of A(y) is at most one-dimensional
and N(A(n)) C h? for all B> 0. Moreover, N(A(x)) = {0} for p < 0.

c) There exists a strictly decreasing sequence (px)keny C RT with limit 0
such that A(uk) has a 1-dimensional nullspace and A(u) is invertible
if u ¢ {uk: k € N} U{0}.

d) We have py < -2 4 _¥5_ 4 1277~ 0119304,

21V 2213
e) For 0 # vk € N(A(ux)), we have the transversality condition

DAty v # R(A()).




Proof of the Theorem (A)

As before, we employ the implicit function theorem to
(e,m) = F (v +ed™, v + €6°", n)
whenever v ¢ ' and obtain (7:)|¢|<c, such that

F (v +e6™,v 4 6%, n.) = const for all £ € (—eo, £0).



Proof of the Theorem (B)

Theorem of Crandall and Rabinowitz '71:
Let M be a smooth Banach manifold and Y be a Banach space, | C R

some open interval, and G: | x M — Y be continuous. Let wyg € M. If
(1) G(A\,wp) =0 for all X e I.
(2) The Fréchet derivatives DG, D,,G, D3 G exist and are continuous.
(3) There exists A* € | and w* € T,,M such that Y/R(D,,G(\*, w))
and N(D,G(\*, wp)) = span (w*) is 1-dimensional.
(4) DGO W)l om)=(r we) W™ & RDWG(X*, w)lw=up)-
Then there exists a continuous local bifurcation curve {(A(s), w(s))}|s|<<
with e small such that (A(0), w(0)) = (A\*, wp) and
{A\w)eU:w#wy, G\, w) =0} ={(A(s),w(s)):0< [s] <e}
for some neighbourhood U of (A", wp) € I x M. Moreover,
w(s) =wp +sw*+o(s) inM, |s| <e.



Proof of the Theorem (B)

We apply the theorem of Crandall-Rabinowitz to
F:(0,00) x Mat2 H?ym(Sz)/const, (v,m) = F (7,7, m)-
As
g 2 a+2 « 2
DU‘F(’Y7 77)’77:0 - E,’Y'A g . TOM _> Hsym(S )/COHSt

the assumptions (1)—(4) in the theorem of Crandall and Rabinowitz

are a consequence of the previous lemma.
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Video references

1. https://www.youtube.com/watch?v=GmiivJkfolg
2. https://www.youtube.com/watch?v=NjB7LXSQoqQc
3. https://www.youtube.com/shorts/StysjXb9isQ


https://www.youtube.com/watch?v=GmiivJkfoLg
https://www.youtube.com/watch?v=NjB7LXSQoQc
https://www.youtube.com/shorts/StysjXb9isQ

