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Kolmogorov equation

Interested in solutions u = u(t, x, v) : [0,T]× Rn × Rn → R of{
∂tu + v · ∇xu = −(−∆v)β/2u + f
u(0) = g.

(1)

with data f, g and β ∈ (0, 2].
Key points:

– Studied first by Kolmogorov in 1934 (β = 2).
– The transport operator ∂t + v · ∇x is called kinetic term.
– Degenerate - Laplacian acts in half of the variables.
– Unbounded coefficient in front of the lower order term.
– Prototype for the Boltzmann equation.
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Motivation - Particle Physics
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Particles at position x with ve-
locity v. We describe the move-
ment of the particles with the
SDE {

dX(t) = V(t)dt
dV(t) = dW(t),

where (W(t))t≥0 is the Wiener
process. ⇝ Kolmogorov equa-
tion β = 2.
The Boltzmann equation mod-
els the particle collision, i.e. the
change of velocity, more pre-
cisely.
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Boltzmann equation

The Boltzmann equation can be written as

∂tu + v · ∇xu = Q(u, u) + l.o.t.,

where

Q(u, g) = p.v.
∫
Rn

u(t, x, v + h)− u(t, x, v)
|h|n+β

m(g)(t, x, v, h)dh

with

m(g)(t, x, v, h) =
∫

w⊥h
g(t, x, v + w) |w|γ+β+1 dw

and β ∈ (0, 2), γ > −n depend on physical assumptions. For
fixed g the operator Q(u, g) is the fractional Laplacian in velocity
with variable density. 3/24



Maximal regularity
General Principle: Find a function space Z for the solution u, a
function space X for the inhomogeneity f and a function space Xγ

for the initial value g such that the equation admits a unique
solution u ∈ Z if and only if f ∈ X and g ∈ Xγ .

Example - Heat equation
For all p ∈ (1,∞) the heat equation{

∂tu = ∆u + f
u(0) = g

admits a unique solution
u ∈ Z = H 1,p((0,∞); Lp(Rn)) ∩ Lp((0,∞);H 2,p(Rn)) if and only
if

– f ∈ X = Lp((0,∞); Lp(Rn)),
– g ∈ Xγ = B2−2/p

pp (Rn) (Besov space).
Moreover, u ∈ C([0,∞);B 2−2/p

pp (Rn)).
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Towards kinetic maximal regularity
Which is the right choice for the solution space Z?

For simplicity β = 2, every result holds true for β ∈ (0, 2).

Singular integral theory on homogeneous groups developed by
Folland and Stein 1974 allows to prove the following. If
f ∈ Lp(R; Lp(R2n)), then the solution u of the Kolmogorov
equation satisfies

∥∂tu + v · ∇xu∥p + ∥∆vu∥p ≲ ∥f ∥p .

No control of the time-derivative. We prove classical maximal
Lp-regularity is not applicable.
Our choice of function space Z:

Z = {u : u, ∆vu, ∂tu + v · ∇xu ∈ Lp((0,T); Lp(R2n))}.

5/24



Towards kinetic maximal regularity
Which is the right choice for the solution space Z?

For simplicity β = 2, every result holds true for β ∈ (0, 2).

Singular integral theory on homogeneous groups developed by
Folland and Stein 1974 allows to prove the following. If
f ∈ Lp(R; Lp(R2n)), then the solution u of the Kolmogorov
equation satisfies

∥∂tu + v · ∇xu∥p + ∥∆vu∥p ≲ ∥f ∥p .

No control of the time-derivative. We prove classical maximal
Lp-regularity is not applicable.
Our choice of function space Z:

Z = {u : u, ∆vu, ∂tu + v · ∇xu ∈ Lp((0,T); Lp(R2n))}.

5/24



Towards kinetic maximal regularity
Which is the right choice for the solution space Z?

For simplicity β = 2, every result holds true for β ∈ (0, 2).

Singular integral theory on homogeneous groups developed by
Folland and Stein 1974 allows to prove the following. If
f ∈ Lp(R; Lp(R2n)), then the solution u of the Kolmogorov
equation satisfies

∥∂tu + v · ∇xu∥p + ∥∆vu∥p ≲ ∥f ∥p .

No control of the time-derivative. We prove classical maximal
Lp-regularity is not applicable.

Our choice of function space Z:

Z = {u : u, ∆vu, ∂tu + v · ∇xu ∈ Lp((0,T); Lp(R2n))}.

5/24



Towards kinetic maximal regularity
Which is the right choice for the solution space Z?

For simplicity β = 2, every result holds true for β ∈ (0, 2).

Singular integral theory on homogeneous groups developed by
Folland and Stein 1974 allows to prove the following. If
f ∈ Lp(R; Lp(R2n)), then the solution u of the Kolmogorov
equation satisfies

∥∂tu + v · ∇xu∥p + ∥∆vu∥p ≲ ∥f ∥p .

No control of the time-derivative. We prove classical maximal
Lp-regularity is not applicable.
Our choice of function space Z:

Z = {u : u, ∆vu, ∂tu + v · ∇xu ∈ Lp((0,T); Lp(R2n))}.
5/24



Towards kinetic maximal regularity
Divide and conquer

We can split the characterization of the solution in two separate
problems.

Inhomogeneous eq. with zero
intial-value{

∂tu + v · ∇xu = ∆vu + f
u(0) = 0

Classical Method: Lp-estimates,
singular integrals,...
Done, Folland/Stein.

Homogeneous eq. with non-zero
intial-value{

∂tu + v · ∇xu = ∆vu
u(0) = g

Classical Method: Studying the
trace space of Z.
TODO!
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Towards kinetic maximal regularity
The trace space of Z - 1
Does a function u ∈ Z admit a trace?

Yes!
Sketch of the proof
Define

[Γu](t, x, v) = u(t, x + tv, v) and [Γ(t)w](x, v) = w(x + tv, v)
on functions u : [0,T]× R2n → R and w : R2n → R. Then,

∂tΓu = Γ(∂tu + v · ∇xu).
If u ∈ Z, then Γu ∈ H1,p((0,T); Lp(R2n)), whence

Γu ∈ C([0,T]; Lp(R2n)).

As (Γ(t))t∈R is C0-group, it follows
u = Γ−1(t)Γ(t)u ∈ C([0,T]; Lp(R2n)).

Consequently, Tr(Z) well-defined and Z ↪→ C([0,T];Tr(Z)).
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Towards kinetic maximal regularity
The trace space of Z - 2

The trace space of Z cannot be characterized by classical
interpolation theory. As for the heat equation we expect

Tr(Z) ↪→ B 2−2/p
pp,v (R2n).

Is there any control of regularity in x? Yes!
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Towards kinetic maximal regularity
Regularity transfer from v to x.

The phenomenon of regularity transfer.

Theorem (Bouchut 2002)
Let u ∈ Lp((0,T); Lp(R2n)) with
∂tu+ v · ∇xu ∈ Lp((0,T); Lp(R2n)) and u ∈ Lp((0,T);H 2,p

v (R2n)),
then

u ∈ Lp((0,T);H 2/3,p
x (R2n)).

In words: If u is the solution of a kinetic equation and u has two
derivatives in velocity we obtain 2/3 of a derivative in space, too.
Very useful and powerful result!
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Towards kinetic maximal regularity
The initial value problem - 2

Similar to Bouchut we also get some regularity in x for the trace
space.

Theorem (N., Zacher, 2020)
Let p ∈ (1,∞), then

Tr(Z) ∼= B2/3(1−1/p)
pp,x (R2n) ∩ B2−2/p

pp,v (R2n)

Proof
Littlewood-Paley decomposition, Fourier analysis and the
fundamental solution for the Kolmogorov equation.
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Kinetic maximal Lp-regularity
for the (fractional) Kolmogorov equation

Theorem (N., Zacher, 2020)
Let T ∈ (0,∞). For all p ∈ (1,∞) the Kolmogorov equation{

∂tu + v · ∇xu = ∆vu + f
u(0) = g

admits a unique solution u ∈ Z if and only if
– f ∈ X = Lp((0,T); Lp(Rn)),
– g ∈ Xγ = B 2/3(1−1/p)

pp,x (R2n) ∩ B 2−2/p
pp,v (R2n).

Moreover, u ∈ C([0,T];Xγ).

We say the operator A = ∆v admits kinetic maximal
Lp-regularity.

11/24



Extensions
Change of base space

So far we have only considered the base space X = Lp(R2n).

– We also consider the case X = Lq(R2n) for some q ∈ (1,∞)
different from p and prove kinetic maximal Lp(Lq)-regularity.

– For p ∈ (1,∞), q = 2 we characterize weak solutions to the
fractional Kolmogorov equation.
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Extensions
Temporal weights

Instead of Lp((0,T);X) we consider a Lebesgue space with
temporal weight of the form t1−µ for some µ ∈ (1/p, 1] defined as

Lp
µ((0,T);X) = {u : (0,T) → X :

∫ T

0
tp−pµ ∥u(t)∥p

X dt < ∞}.

We write Zµ for Z with temporal weight in the Lp-spaces.

Key features:
– Kin. max. Lp-reg. ⇐⇒ Kin. max. Lp

µ-reg. for any
µ ∈ (1/p, 1]

– The trace space of Zµ is given by
Tr(Zµ) = Xγ,µ = B 2/3(µ−1/p)

pp,x (R2n) ∩ B 2(µ−1/p)
pp,v (R2n).

– Instantaneous regularization
Zµ(0,T) ↪→ Z(δ,T) ↪→ C([δ,T];Xγ,1) for all δ > 0.
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Extensions
Kinetic maximal Lp

µ(Lq)-regularity

Theorem (N., Zacher, 2020)
Let T ∈ (0,∞). For all p, q ∈ (1,∞) and any µ ∈ (1/p, 1] the
Kolmogorov equation{

∂tu + v · ∇xu = ∆vu + f
u(0) = g

admits a unique solution
u ∈ Zµ = {u : u, ∆vu, ∂tu + v · ∇xu ∈ Lp

µ((0,T); Lq(R2n))}.

if and only if
– f ∈ X = Lp

µ((0,T); Lq(Rn)),
– g ∈ Xγ,µ = B 2/3(µ−1/p)

qp,x (R2n) ∩ B 2(µ−1/p)
qp,v (R2n).

Moreover, u ∈ C([0,T];Xγ,µ).
14/24



Extensions
Different Operators

Question: Do other operators admit kinetic maximal
Lp-regularity?

Yes.

Examples:

– Au = a(t, x, v) : ∇2
vu + b · ∇vu + cu

– Au = −(−∆v)
β
2 u with β ∈ (0, 2)

– non-local integro-differential operators acting in velocity with
possibly time, space and velocity dependent density
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Extensions
Different Operators

Theorem (N., Zacher, 2020)
Let p, q ∈ (1,∞), µ ∈ (1/p, 1], a ∈ L∞([0,T]× R2n;Sym(n)),
b ∈ L∞([0,T]×R2n;Rn) and c ∈ L∞([0,T]×R2n;R). If a ≥ λId
for some λ > 0 and if the function (t, x, v) 7→ a(t, x + tv, v) is
uniformly continuous, then then the family of operators

A(t)u = a(t, ·) : ∇2
vu + b(t, ·) · ∇vu + c(t, ·)u

admits kinetic maximal Lp
µ(Lq)-regularity.
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Quasilinear kinetic diffusion problem
Short-time existence

We prove short-time existence of strong Lp
µ-solutions to the

following quasilinear kinetic diffusion equation{
∂tu + v · ∇xu = ∇v · (a(u)∇vu)
u(0) = g

for a ∈ C 2
b (R;Sym(n)) with a ≥ λId for some λ > 0,

µ− 1/p > 2n/p and g ∈ Xγ,µ.

Methods: Freeze the equation at the initial value and use kinetic
maximal Lp-regularity for the frozen equation. Here, we need the
maximal regularity of A = a(g(x, v)) : ∇2

vu.
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Further research

Possible directions:
– weak Lp-solutions
– study kinetic quasilinear problems from

physics/economics/biology
– regularity and long-time behavior of solutions to quasilinear

problems
– a priori-estimates to solutions of the Kolmogorov equation
– conditions on the operator A such that it admits kinetic

maximal Lp-regularity
– boundary problems
– different first order terms, for example ∂t + ⟨x,B∇⟩ or the

relativistic kinetic term ∂t +
v√

1+|v|2
∇x
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Discussion
A quasilinear heat equation

We want to understand if the solution constructed for the kinetic
quasilinear diffusion problem exist for all positive times. Not even
known in the parabolic case. We investigate{

∂tu = ∇ · (a(u)∇u) = a(u)∆u + a(u) |∇u|2

u(0) = g
(2)

for a ∈ C2(R, (λ,K)) and 0 < λ < K.

Theorem
If p > n + 2, then for all g ∈ B 2−2/p

pp (Rn) there exists a time
T = T(g) and function
u ∈ Z := H 1,p((0,T); Lp(Rn)) ∩ Lp((0,T);H 2,p(Rn)), which
solves the quasilinear diffusion equation (2).
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Discussion
Long time existence for small initial datum - 1

We assume that ∥g∥∞ ≤ ε < 1. Recall B2−2/p
pp ⊂ L∞(Rn) for

p > n + 2.
Step 0: Extend the local solution to a maximal interval of
existence [0, t+). Let T < t+.

Step 1: Maximum principle. Let g ∈ Xγ = B 2−2/p
pp (Rn) ⊂ L∞(Rn).

If u is an Lp-solution to ∂tu = ∇ · (a(t, x)∇u), u(0) = g, on [0,T]
then

inf
x∈Rn

g(x) ≤ u(t, x) ≤ sup
x∈Rn

g(x).

Step 2: A priori estimate. There exists constants C = C(n, λ,K)
and α = α(n, λ,K) > 0 such that

∥u∥Cα([0,T]×Rn) ≤ C.
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Discussion
Long time existence - 2

Step 3: We freeze the nonlinearity, i.e. consider the linear problem{
∂tw = b(t, x)∆w
u(0) = g

with b(t, x) = a(u(t, x)). Due to the uniform continuity proven in
Step 2 there exists a constant M = M(λ, n,K) > 0, independent
of T, such that

∥w∥Z(0,T) ≤ M ∥g∥Xγ
.
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Discussion
Long time existence - 3

Step 4: We have

∥u∥Z(0,T) ≤ ∥u − w∥Z(0,T) + ∥w∥Z(0,T)

≤ M
∥∥∥|∇u|2

∥∥∥
p
+ ∥w∥Z(0,T)

≤ M ∥u∥∞
∥∥∇2u

∥∥
p + ∥w∥Z(0,T)

≤ M ∥g∥∞ ∥u∥Z + ∥w∥Z(0,T) .

Step 5: If ε < 1
M , then

lim
T→T+

∥u∥Z(0,T) < ∞.

Consequently, t+ = ∞ (general principle as for ODE).
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Discussion
Long time existence - 4

Are there other conditions on the initial value, the solution such
that t+ = ∞?

– We need to control the L2p-norm of ∇u.
– On bounded sets Hölder continuity implies Sobolev regularity,

whence this norm can be controlled by Gagliardo-Nirenberg
inequality and we always have global existence.

– L1-bound on the initial value g? This gives an a priori bound
for u in all Lp-norms.

– Other ideas?
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