P. Auscher, C. Imbert and L. Niebel Weak solutions to Kolmogorov-Fokker-Planck equations: Regularity, existence and uniqueness HAL/arXiv (2024).
[HAL][arXiv]
P. Auscher, C. Imbert and L. Niebel Fundamental solutions to Kolmogorov-Fokker-Planck equations with rough coefficients: Existence, uniqueness, upper estimates HAL/Arxiv (2024).
[HAL][arXiv]
L. Niebel and R. Zacher
On a kinetic Poincaré inequality and beyond ArXiv (2022).
[arXiv]
Publications
L. Niebel and R. Zacher
A trajectorial interpretation of Moser's proof of the Harnack inequality To appear in Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2023).
[arXiv]
L. Niebel and R. Zacher
Kinetic maximal \(L^p \)-regularity with temporal weights and application to quasilinear kinetic diffusion equations In Journal of Differential Equations 307, 29 — 82 (2022).
[Journal][arXiv]
L. Niebel Kinetic maximal \(L^p_\mu(L^p) \)-regularity for the fractional Kolmogorov equation with variable density In Nonlinear Analysis 214 (2022).
[Journal][arXiv]
L. Niebel and R. Zacher
Kinetic maximal \(L^2 \)-regularity for the (fractional) Kolmogorov equation In Journal of Evolution Equations 21, 3585 — 3612 (2021).
[Journal][arXiv]
Theses
L. Niebel On analytic aspects of kinetic partial differential equations PhD Thesis, June 2023
[Summary][pdf]
L. Niebel Kolmogorov Equations - Well-Posedness, Regularity, Asymptotics and Harnack inequalites Master Thesis, March 2019
[pdf]
L. Niebel Long-time behavior of Markov chains by discrete functional inequalities and entropic Ricci curvature in german Bachelor Thesis, 2018
[pdf]
Miscellaneous
L. Niebel Fourier transformation as the Gelfand transformation on \( L^1(\mathbb{R}) \) in german
Seminar presentation, June 2017
[pdf]